Loading…

Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques

Previous studies in mechanical and column flotation cells have shown that bubble surface area flux (S b) is an appropriate indicator of gas dispersion in a flotation cell which has a relatively strong correlation with flotation rate constant. In the present investigation, based on extensive tests co...

Full description

Saved in:
Bibliographic Details
Published in:Minerals engineering 2010, Vol.23 (2), p.83-90
Main Authors: Massinaei, M., Doostmohammadi, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-7b77c1ea8ee31501848857414a4a84ec34ac83f745b51e37573ca390803a38a53
cites cdi_FETCH-LOGICAL-c337t-7b77c1ea8ee31501848857414a4a84ec34ac83f745b51e37573ca390803a38a53
container_end_page 90
container_issue 2
container_start_page 83
container_title Minerals engineering
container_volume 23
creator Massinaei, M.
Doostmohammadi, R.
description Previous studies in mechanical and column flotation cells have shown that bubble surface area flux (S b) is an appropriate indicator of gas dispersion in a flotation cell which has a relatively strong correlation with flotation rate constant. In the present investigation, based on extensive tests conducted in an industrial Metso Minerals CISA flotation column (4 m in diameter and 12 m in height) in a rougher circuit, S b as a function of the most significant operating variables which affect gas dispersion in a flotation column (i.e. superficial gas velocity, slurry density (solids%) and frother dosage/type) was modeled using artificial neural network (ANN) and statistical (non-linear regression) techniques. The models were developed taking into consideration a data set consisting of 82 experimental tests conducted in an industrial rougher column (at a copper concentrator in Iran) operating under a variety of experimental conditions. This paper outlines the development of the models and validation using a number of randomly selected datasets. Limitations of the present models are discussed and comments and recommendations on further investigations are given.
doi_str_mv 10.1016/j.mineng.2009.10.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36332403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0892687509002593</els_id><sourcerecordid>36332403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7b77c1ea8ee31501848857414a4a84ec34ac83f745b51e37573ca390803a38a53</originalsourceid><addsrcrecordid>eNp9ULtuGzEQJAIHsCznD1KwSncKKfJEXhPAMGI7gAI3dk3s8fYkKifS5iOOq_x6eJFrNzvA7Mwsdgj5zNmKM775elgdnUe_W60Z6yq1Yqz9QBZcq3XTSSnPyILpbt1stGrPyUVKB1YVSncL8vdnGHByfkfDSPvS9xPSVOIIFilEBDpO5Q91noKvcygpRwcTjaHs9hipDVM5elrSnAAxu9HZee-xxP-QX0L8Vc0DTRmyS9nZyme0e--eC6ZL8nGEKeGnN1ySx5vvD9d3zfb-9sf11baxQqjcqF4pyxE0ouAt41pq3SrJJUjQEq2QYLUYlWz7lqNQrRIWRMc0EyA0tGJJvpxyn2KY72ZzdMniNIHHUJIRGyHWkokqlCehjSGliKN5iu4I8dVwZua2zcGc2jZz2zNbu6y2bycb1id-O4wmWYfe4uAi2myG4N4P-AcNmYy2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36332403</pqid></control><display><type>article</type><title>Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques</title><source>ScienceDirect Freedom Collection</source><creator>Massinaei, M. ; Doostmohammadi, R.</creator><creatorcontrib>Massinaei, M. ; Doostmohammadi, R.</creatorcontrib><description>Previous studies in mechanical and column flotation cells have shown that bubble surface area flux (S b) is an appropriate indicator of gas dispersion in a flotation cell which has a relatively strong correlation with flotation rate constant. In the present investigation, based on extensive tests conducted in an industrial Metso Minerals CISA flotation column (4 m in diameter and 12 m in height) in a rougher circuit, S b as a function of the most significant operating variables which affect gas dispersion in a flotation column (i.e. superficial gas velocity, slurry density (solids%) and frother dosage/type) was modeled using artificial neural network (ANN) and statistical (non-linear regression) techniques. The models were developed taking into consideration a data set consisting of 82 experimental tests conducted in an industrial rougher column (at a copper concentrator in Iran) operating under a variety of experimental conditions. This paper outlines the development of the models and validation using a number of randomly selected datasets. Limitations of the present models are discussed and comments and recommendations on further investigations are given.</description><identifier>ISSN: 0892-6875</identifier><identifier>EISSN: 1872-9444</identifier><identifier>DOI: 10.1016/j.mineng.2009.10.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Flotation machines ; Froth flotation ; Modeling ; Neural networks</subject><ispartof>Minerals engineering, 2010, Vol.23 (2), p.83-90</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7b77c1ea8ee31501848857414a4a84ec34ac83f745b51e37573ca390803a38a53</citedby><cites>FETCH-LOGICAL-c337t-7b77c1ea8ee31501848857414a4a84ec34ac83f745b51e37573ca390803a38a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Massinaei, M.</creatorcontrib><creatorcontrib>Doostmohammadi, R.</creatorcontrib><title>Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques</title><title>Minerals engineering</title><description>Previous studies in mechanical and column flotation cells have shown that bubble surface area flux (S b) is an appropriate indicator of gas dispersion in a flotation cell which has a relatively strong correlation with flotation rate constant. In the present investigation, based on extensive tests conducted in an industrial Metso Minerals CISA flotation column (4 m in diameter and 12 m in height) in a rougher circuit, S b as a function of the most significant operating variables which affect gas dispersion in a flotation column (i.e. superficial gas velocity, slurry density (solids%) and frother dosage/type) was modeled using artificial neural network (ANN) and statistical (non-linear regression) techniques. The models were developed taking into consideration a data set consisting of 82 experimental tests conducted in an industrial rougher column (at a copper concentrator in Iran) operating under a variety of experimental conditions. This paper outlines the development of the models and validation using a number of randomly selected datasets. Limitations of the present models are discussed and comments and recommendations on further investigations are given.</description><subject>Flotation machines</subject><subject>Froth flotation</subject><subject>Modeling</subject><subject>Neural networks</subject><issn>0892-6875</issn><issn>1872-9444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9ULtuGzEQJAIHsCznD1KwSncKKfJEXhPAMGI7gAI3dk3s8fYkKifS5iOOq_x6eJFrNzvA7Mwsdgj5zNmKM775elgdnUe_W60Z6yq1Yqz9QBZcq3XTSSnPyILpbt1stGrPyUVKB1YVSncL8vdnGHByfkfDSPvS9xPSVOIIFilEBDpO5Q91noKvcygpRwcTjaHs9hipDVM5elrSnAAxu9HZee-xxP-QX0L8Vc0DTRmyS9nZyme0e--eC6ZL8nGEKeGnN1ySx5vvD9d3zfb-9sf11baxQqjcqF4pyxE0ouAt41pq3SrJJUjQEq2QYLUYlWz7lqNQrRIWRMc0EyA0tGJJvpxyn2KY72ZzdMniNIHHUJIRGyHWkokqlCehjSGliKN5iu4I8dVwZua2zcGc2jZz2zNbu6y2bycb1id-O4wmWYfe4uAi2myG4N4P-AcNmYy2</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Massinaei, M.</creator><creator>Doostmohammadi, R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2010</creationdate><title>Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques</title><author>Massinaei, M. ; Doostmohammadi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7b77c1ea8ee31501848857414a4a84ec34ac83f745b51e37573ca390803a38a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Flotation machines</topic><topic>Froth flotation</topic><topic>Modeling</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massinaei, M.</creatorcontrib><creatorcontrib>Doostmohammadi, R.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Minerals engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massinaei, M.</au><au>Doostmohammadi, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques</atitle><jtitle>Minerals engineering</jtitle><date>2010</date><risdate>2010</risdate><volume>23</volume><issue>2</issue><spage>83</spage><epage>90</epage><pages>83-90</pages><issn>0892-6875</issn><eissn>1872-9444</eissn><abstract>Previous studies in mechanical and column flotation cells have shown that bubble surface area flux (S b) is an appropriate indicator of gas dispersion in a flotation cell which has a relatively strong correlation with flotation rate constant. In the present investigation, based on extensive tests conducted in an industrial Metso Minerals CISA flotation column (4 m in diameter and 12 m in height) in a rougher circuit, S b as a function of the most significant operating variables which affect gas dispersion in a flotation column (i.e. superficial gas velocity, slurry density (solids%) and frother dosage/type) was modeled using artificial neural network (ANN) and statistical (non-linear regression) techniques. The models were developed taking into consideration a data set consisting of 82 experimental tests conducted in an industrial rougher column (at a copper concentrator in Iran) operating under a variety of experimental conditions. This paper outlines the development of the models and validation using a number of randomly selected datasets. Limitations of the present models are discussed and comments and recommendations on further investigations are given.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mineng.2009.10.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-6875
ispartof Minerals engineering, 2010, Vol.23 (2), p.83-90
issn 0892-6875
1872-9444
language eng
recordid cdi_proquest_miscellaneous_36332403
source ScienceDirect Freedom Collection
subjects Flotation machines
Froth flotation
Modeling
Neural networks
title Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20bubble%20surface%20area%20flux%20in%20an%20industrial%20rougher%20column%20using%20artificial%20neural%20network%20and%20statistical%20techniques&rft.jtitle=Minerals%20engineering&rft.au=Massinaei,%20M.&rft.date=2010&rft.volume=23&rft.issue=2&rft.spage=83&rft.epage=90&rft.pages=83-90&rft.issn=0892-6875&rft.eissn=1872-9444&rft_id=info:doi/10.1016/j.mineng.2009.10.005&rft_dat=%3Cproquest_cross%3E36332403%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-7b77c1ea8ee31501848857414a4a84ec34ac83f745b51e37573ca390803a38a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=36332403&rft_id=info:pmid/&rfr_iscdi=true