Loading…
Density functional theory study of the electronic and field emission properties of nitrogen- and boron-doped carbon nanocones
Using first-principles density functional theory, we have investigated the electronic and field emission properties of carbon nanocones (CNCs) doped with N or B with 60° disclination. Our findings are that the emission properties for the doped CNCs depend on the doping species, position, and concent...
Saved in:
Published in: | Physics letters. A 2010-01, Vol.374 (5), p.782-787 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using first-principles density functional theory, we have investigated the electronic and field emission properties of carbon nanocones (CNCs) doped with N or B with 60° disclination. Our findings are that the emission properties for the doped CNCs depend on the doping species, position, and concentration. Compared to pristine CNC, N-doped CNCs exhibit better field emission properties, in which as the doping concentration increases from 1.25% to 2.5% the maximum emission current at applied electric field of 0.3 V/Å increases from 0.94 μA (one N atom is doped at the position adjacent to the pentagon) to 2.90 μA (two N atoms are doped at pentagon). As for pristine CNC the emission current is only 0.21 μA. However, B-doping has no significant influence on the emission properties of CNCs. Our findings suggest that N-doped CNCs can be used as a candidate for cold-emission electron sources. |
---|---|
ISSN: | 0375-9601 1873-2429 |
DOI: | 10.1016/j.physleta.2009.11.066 |