Loading…

Development of a sample preparation procedure of sewage sludge samples for the determination of polycyclic aromatic hydrocarbons based on selective pressurized liquid extraction

An automated, simple and sensitive method based on selective pressurized liquid extraction (SPLE) was developed for the analysis of polycyclic aromatic hydrocarbons in sewage sludge samples. The new sample preparation procedure consists of on-line clean-up by inclusion of sorbents in the extraction...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chromatography A 2010-01, Vol.1217 (4), p.425-435
Main Authors: Pena, Mª Teresa, Casais, Mª Carmen, Mejuto, Mª Carmen, Cela, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An automated, simple and sensitive method based on selective pressurized liquid extraction (SPLE) was developed for the analysis of polycyclic aromatic hydrocarbons in sewage sludge samples. The new sample preparation procedure consists of on-line clean-up by inclusion of sorbents in the extraction cell, and combines elevated temperatures and pressures with liquid solvents to achieve fast and efficient removal of target analytes from complex sewage sludge matrices. The effects of various operational parameters (e.g. sample pretreatment, extraction solvent, temperature, pressure, static time, etc.) on the performance of SPLE procedure were carefully investigated, obtaining the best results when SPLE conditions were fixed at 140 °C, 1500 psi, static time of 5 min and n-hexane as extraction solvent. A new programmed temperature vaporization–gas chromatography–tandem mass spectrometry method based on large volume injection (PTV–LVI–GC–MS/MS) was also developed and analytical determinations were performed by high performance liquid chromatography coupled with fluorescence detection and GC–MS/MS. The extraction yields for the different compounds obtained by SPLE ranged from 84.8% to 106.6%. Quantification limits obtained for all of these studied compounds (between 0.0001 and 0.005 μg g −1, dry mass) were well below the regulatory limits for all compounds considered. To test the accuracy of the SPLE technique, the optimized methodology was applied to the analysis of a certified reference material (sewage sludge (BCR088)) and a reference material (sewage sludge (RTC-CNS312-04)), with excellent results.
ISSN:0021-9673
DOI:10.1016/j.chroma.2009.11.081