Loading…
Radial Plasma Dynamic in Sequential Pinches
Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the ex...
Saved in:
Published in: | IEEE transactions on plasma science 2009-11, Vol.37 (11), p.2186-2190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2009.2031868 |