Loading…
The multiple roles of computational chemistry in fragment-based drug design
Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment...
Saved in:
Published in: | Journal of computer-aided molecular design 2009-08, Vol.23 (8), p.459-473 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863 |
container_end_page | 473 |
container_issue | 8 |
container_start_page | 459 |
container_title | Journal of computer-aided molecular design |
container_volume | 23 |
creator | Law, Richard Barker, Oliver Barker, John J. Hesterkamp, Thomas Godemann, Robert Andersen, Ole Fryatt, Tara Courtney, Steve Hallett, Dave Whittaker, Mark |
description | Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted. |
doi_str_mv | 10.1007/s10822-009-9284-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36355155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895384881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863</originalsourceid><addsrcrecordid>eNp9kbtKBDEUhoMoul4ewEaChdhEc0-mlMUbLtisYBcyMyfryFzWZKbw7Y3sgiBoleJ8_39y-BA6ZfSKUWquE6OWc0JpQQpuJWE7aMaUEUQWiu2iGS04JVrJ1wN0mNI7zZlC0310wAolhDByhp6Wb4C7qR2bdQs4Di0kPARcDd16Gv3YDL1vcfUGXZPG-ImbHofoVx30Iyl9ghrXcVrhGlKz6o_RXvBtgpPte4Re7m6X8weyeL5_nN8sSCW1HYkVogQKlZCm1tzUXAVfllwGVlitS8t0waXxlTXaGy2FLz2lVgcRQARltThCF5vedRw-Jkijy7-roG19D8OUnNBCKaZUBi__BRkVginNlMzo-S_0fZhiPj45zrTQhhqeIbaBqjikFCG4dWw6Hz9zk_s24jZGXDbivo04ljNn2-Kp7KD-SWwVZIBvgJRH_Qriz-a_W78ABrOVCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216367072</pqid></control><display><type>article</type><title>The multiple roles of computational chemistry in fragment-based drug design</title><source>Springer Link</source><creator>Law, Richard ; Barker, Oliver ; Barker, John J. ; Hesterkamp, Thomas ; Godemann, Robert ; Andersen, Ole ; Fryatt, Tara ; Courtney, Steve ; Hallett, Dave ; Whittaker, Mark</creator><creatorcontrib>Law, Richard ; Barker, Oliver ; Barker, John J. ; Hesterkamp, Thomas ; Godemann, Robert ; Andersen, Ole ; Fryatt, Tara ; Courtney, Steve ; Hallett, Dave ; Whittaker, Mark</creatorcontrib><description>Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-009-9284-1</identifier><identifier>PMID: 19533374</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amyloid Precursor Protein Secretases - antagonists & inhibitors ; Amyloid Precursor Protein Secretases - chemistry ; Animal Anatomy ; Aspartic Acid Endopeptidases - antagonists & inhibitors ; Aspartic Acid Endopeptidases - chemistry ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Computational Biology ; Computational chemistry ; Computer Applications in Chemistry ; Crystallography ; Drug Discovery ; Enzyme Inhibitors - chemistry ; Histology ; HSP90 Heat-Shock Proteins - antagonists & inhibitors ; HSP90 Heat-Shock Proteins - chemistry ; Humans ; Hydrogen Bonding ; Ligands ; Molecular biology ; Molecular Targeted Therapy ; Morphology ; Pharmacology ; Phosphoric Diester Hydrolases - chemistry ; Physical Chemistry ; Physical properties ; Protein Binding ; Protein Conformation ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors ; Proto-Oncogene Proteins c-bcl-2 - chemistry ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - therapeutic use</subject><ispartof>Journal of computer-aided molecular design, 2009-08, Vol.23 (8), p.459-473</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863</citedby><cites>FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19533374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Law, Richard</creatorcontrib><creatorcontrib>Barker, Oliver</creatorcontrib><creatorcontrib>Barker, John J.</creatorcontrib><creatorcontrib>Hesterkamp, Thomas</creatorcontrib><creatorcontrib>Godemann, Robert</creatorcontrib><creatorcontrib>Andersen, Ole</creatorcontrib><creatorcontrib>Fryatt, Tara</creatorcontrib><creatorcontrib>Courtney, Steve</creatorcontrib><creatorcontrib>Hallett, Dave</creatorcontrib><creatorcontrib>Whittaker, Mark</creatorcontrib><title>The multiple roles of computational chemistry in fragment-based drug design</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.</description><subject>Amyloid Precursor Protein Secretases - antagonists & inhibitors</subject><subject>Amyloid Precursor Protein Secretases - chemistry</subject><subject>Animal Anatomy</subject><subject>Aspartic Acid Endopeptidases - antagonists & inhibitors</subject><subject>Aspartic Acid Endopeptidases - chemistry</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational Biology</subject><subject>Computational chemistry</subject><subject>Computer Applications in Chemistry</subject><subject>Crystallography</subject><subject>Drug Discovery</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Histology</subject><subject>HSP90 Heat-Shock Proteins - antagonists & inhibitors</subject><subject>HSP90 Heat-Shock Proteins - chemistry</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Ligands</subject><subject>Molecular biology</subject><subject>Molecular Targeted Therapy</subject><subject>Morphology</subject><subject>Pharmacology</subject><subject>Phosphoric Diester Hydrolases - chemistry</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-bcl-2 - chemistry</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - therapeutic use</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kbtKBDEUhoMoul4ewEaChdhEc0-mlMUbLtisYBcyMyfryFzWZKbw7Y3sgiBoleJ8_39y-BA6ZfSKUWquE6OWc0JpQQpuJWE7aMaUEUQWiu2iGS04JVrJ1wN0mNI7zZlC0310wAolhDByhp6Wb4C7qR2bdQs4Di0kPARcDd16Gv3YDL1vcfUGXZPG-ImbHofoVx30Iyl9ghrXcVrhGlKz6o_RXvBtgpPte4Re7m6X8weyeL5_nN8sSCW1HYkVogQKlZCm1tzUXAVfllwGVlitS8t0waXxlTXaGy2FLz2lVgcRQARltThCF5vedRw-Jkijy7-roG19D8OUnNBCKaZUBi__BRkVginNlMzo-S_0fZhiPj45zrTQhhqeIbaBqjikFCG4dWw6Hz9zk_s24jZGXDbivo04ljNn2-Kp7KD-SWwVZIBvgJRH_Qriz-a_W78ABrOVCA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Law, Richard</creator><creator>Barker, Oliver</creator><creator>Barker, John J.</creator><creator>Hesterkamp, Thomas</creator><creator>Godemann, Robert</creator><creator>Andersen, Ole</creator><creator>Fryatt, Tara</creator><creator>Courtney, Steve</creator><creator>Hallett, Dave</creator><creator>Whittaker, Mark</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>The multiple roles of computational chemistry in fragment-based drug design</title><author>Law, Richard ; Barker, Oliver ; Barker, John J. ; Hesterkamp, Thomas ; Godemann, Robert ; Andersen, Ole ; Fryatt, Tara ; Courtney, Steve ; Hallett, Dave ; Whittaker, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amyloid Precursor Protein Secretases - antagonists & inhibitors</topic><topic>Amyloid Precursor Protein Secretases - chemistry</topic><topic>Animal Anatomy</topic><topic>Aspartic Acid Endopeptidases - antagonists & inhibitors</topic><topic>Aspartic Acid Endopeptidases - chemistry</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational Biology</topic><topic>Computational chemistry</topic><topic>Computer Applications in Chemistry</topic><topic>Crystallography</topic><topic>Drug Discovery</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Histology</topic><topic>HSP90 Heat-Shock Proteins - antagonists & inhibitors</topic><topic>HSP90 Heat-Shock Proteins - chemistry</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Ligands</topic><topic>Molecular biology</topic><topic>Molecular Targeted Therapy</topic><topic>Morphology</topic><topic>Pharmacology</topic><topic>Phosphoric Diester Hydrolases - chemistry</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-bcl-2 - chemistry</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Law, Richard</creatorcontrib><creatorcontrib>Barker, Oliver</creatorcontrib><creatorcontrib>Barker, John J.</creatorcontrib><creatorcontrib>Hesterkamp, Thomas</creatorcontrib><creatorcontrib>Godemann, Robert</creatorcontrib><creatorcontrib>Andersen, Ole</creatorcontrib><creatorcontrib>Fryatt, Tara</creatorcontrib><creatorcontrib>Courtney, Steve</creatorcontrib><creatorcontrib>Hallett, Dave</creatorcontrib><creatorcontrib>Whittaker, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Law, Richard</au><au>Barker, Oliver</au><au>Barker, John J.</au><au>Hesterkamp, Thomas</au><au>Godemann, Robert</au><au>Andersen, Ole</au><au>Fryatt, Tara</au><au>Courtney, Steve</au><au>Hallett, Dave</au><au>Whittaker, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multiple roles of computational chemistry in fragment-based drug design</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>23</volume><issue>8</issue><spage>459</spage><epage>473</epage><pages>459-473</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>19533374</pmid><doi>10.1007/s10822-009-9284-1</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-654X |
ispartof | Journal of computer-aided molecular design, 2009-08, Vol.23 (8), p.459-473 |
issn | 0920-654X 1573-4951 |
language | eng |
recordid | cdi_proquest_miscellaneous_36355155 |
source | Springer Link |
subjects | Amyloid Precursor Protein Secretases - antagonists & inhibitors Amyloid Precursor Protein Secretases - chemistry Animal Anatomy Aspartic Acid Endopeptidases - antagonists & inhibitors Aspartic Acid Endopeptidases - chemistry Biotechnology Chemistry Chemistry and Materials Science Computational Biology Computational chemistry Computer Applications in Chemistry Crystallography Drug Discovery Enzyme Inhibitors - chemistry Histology HSP90 Heat-Shock Proteins - antagonists & inhibitors HSP90 Heat-Shock Proteins - chemistry Humans Hydrogen Bonding Ligands Molecular biology Molecular Targeted Therapy Morphology Pharmacology Phosphoric Diester Hydrolases - chemistry Physical Chemistry Physical properties Protein Binding Protein Conformation Proteins Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors Proto-Oncogene Proteins c-bcl-2 - chemistry Small Molecule Libraries - chemistry Small Molecule Libraries - therapeutic use |
title | The multiple roles of computational chemistry in fragment-based drug design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multiple%20roles%20of%20computational%20chemistry%20in%20fragment-based%20drug%20design&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Law,%20Richard&rft.date=2009-08-01&rft.volume=23&rft.issue=8&rft.spage=459&rft.epage=473&rft.pages=459-473&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-009-9284-1&rft_dat=%3Cproquest_cross%3E1895384881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216367072&rft_id=info:pmid/19533374&rfr_iscdi=true |