Loading…

The multiple roles of computational chemistry in fragment-based drug design

Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer-aided molecular design 2009-08, Vol.23 (8), p.459-473
Main Authors: Law, Richard, Barker, Oliver, Barker, John J., Hesterkamp, Thomas, Godemann, Robert, Andersen, Ole, Fryatt, Tara, Courtney, Steve, Hallett, Dave, Whittaker, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863
cites cdi_FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863
container_end_page 473
container_issue 8
container_start_page 459
container_title Journal of computer-aided molecular design
container_volume 23
creator Law, Richard
Barker, Oliver
Barker, John J.
Hesterkamp, Thomas
Godemann, Robert
Andersen, Ole
Fryatt, Tara
Courtney, Steve
Hallett, Dave
Whittaker, Mark
description Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.
doi_str_mv 10.1007/s10822-009-9284-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36355155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895384881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863</originalsourceid><addsrcrecordid>eNp9kbtKBDEUhoMoul4ewEaChdhEc0-mlMUbLtisYBcyMyfryFzWZKbw7Y3sgiBoleJ8_39y-BA6ZfSKUWquE6OWc0JpQQpuJWE7aMaUEUQWiu2iGS04JVrJ1wN0mNI7zZlC0310wAolhDByhp6Wb4C7qR2bdQs4Di0kPARcDd16Gv3YDL1vcfUGXZPG-ImbHofoVx30Iyl9ghrXcVrhGlKz6o_RXvBtgpPte4Re7m6X8weyeL5_nN8sSCW1HYkVogQKlZCm1tzUXAVfllwGVlitS8t0waXxlTXaGy2FLz2lVgcRQARltThCF5vedRw-Jkijy7-roG19D8OUnNBCKaZUBi__BRkVginNlMzo-S_0fZhiPj45zrTQhhqeIbaBqjikFCG4dWw6Hz9zk_s24jZGXDbivo04ljNn2-Kp7KD-SWwVZIBvgJRH_Qriz-a_W78ABrOVCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216367072</pqid></control><display><type>article</type><title>The multiple roles of computational chemistry in fragment-based drug design</title><source>Springer Link</source><creator>Law, Richard ; Barker, Oliver ; Barker, John J. ; Hesterkamp, Thomas ; Godemann, Robert ; Andersen, Ole ; Fryatt, Tara ; Courtney, Steve ; Hallett, Dave ; Whittaker, Mark</creator><creatorcontrib>Law, Richard ; Barker, Oliver ; Barker, John J. ; Hesterkamp, Thomas ; Godemann, Robert ; Andersen, Ole ; Fryatt, Tara ; Courtney, Steve ; Hallett, Dave ; Whittaker, Mark</creatorcontrib><description>Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-009-9284-1</identifier><identifier>PMID: 19533374</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amyloid Precursor Protein Secretases - antagonists &amp; inhibitors ; Amyloid Precursor Protein Secretases - chemistry ; Animal Anatomy ; Aspartic Acid Endopeptidases - antagonists &amp; inhibitors ; Aspartic Acid Endopeptidases - chemistry ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Computational Biology ; Computational chemistry ; Computer Applications in Chemistry ; Crystallography ; Drug Discovery ; Enzyme Inhibitors - chemistry ; Histology ; HSP90 Heat-Shock Proteins - antagonists &amp; inhibitors ; HSP90 Heat-Shock Proteins - chemistry ; Humans ; Hydrogen Bonding ; Ligands ; Molecular biology ; Molecular Targeted Therapy ; Morphology ; Pharmacology ; Phosphoric Diester Hydrolases - chemistry ; Physical Chemistry ; Physical properties ; Protein Binding ; Protein Conformation ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-bcl-2 - chemistry ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - therapeutic use</subject><ispartof>Journal of computer-aided molecular design, 2009-08, Vol.23 (8), p.459-473</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863</citedby><cites>FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19533374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Law, Richard</creatorcontrib><creatorcontrib>Barker, Oliver</creatorcontrib><creatorcontrib>Barker, John J.</creatorcontrib><creatorcontrib>Hesterkamp, Thomas</creatorcontrib><creatorcontrib>Godemann, Robert</creatorcontrib><creatorcontrib>Andersen, Ole</creatorcontrib><creatorcontrib>Fryatt, Tara</creatorcontrib><creatorcontrib>Courtney, Steve</creatorcontrib><creatorcontrib>Hallett, Dave</creatorcontrib><creatorcontrib>Whittaker, Mark</creatorcontrib><title>The multiple roles of computational chemistry in fragment-based drug design</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.</description><subject>Amyloid Precursor Protein Secretases - antagonists &amp; inhibitors</subject><subject>Amyloid Precursor Protein Secretases - chemistry</subject><subject>Animal Anatomy</subject><subject>Aspartic Acid Endopeptidases - antagonists &amp; inhibitors</subject><subject>Aspartic Acid Endopeptidases - chemistry</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational Biology</subject><subject>Computational chemistry</subject><subject>Computer Applications in Chemistry</subject><subject>Crystallography</subject><subject>Drug Discovery</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Histology</subject><subject>HSP90 Heat-Shock Proteins - antagonists &amp; inhibitors</subject><subject>HSP90 Heat-Shock Proteins - chemistry</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Ligands</subject><subject>Molecular biology</subject><subject>Molecular Targeted Therapy</subject><subject>Morphology</subject><subject>Pharmacology</subject><subject>Phosphoric Diester Hydrolases - chemistry</subject><subject>Physical Chemistry</subject><subject>Physical properties</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-bcl-2 - chemistry</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - therapeutic use</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kbtKBDEUhoMoul4ewEaChdhEc0-mlMUbLtisYBcyMyfryFzWZKbw7Y3sgiBoleJ8_39y-BA6ZfSKUWquE6OWc0JpQQpuJWE7aMaUEUQWiu2iGS04JVrJ1wN0mNI7zZlC0310wAolhDByhp6Wb4C7qR2bdQs4Di0kPARcDd16Gv3YDL1vcfUGXZPG-ImbHofoVx30Iyl9ghrXcVrhGlKz6o_RXvBtgpPte4Re7m6X8weyeL5_nN8sSCW1HYkVogQKlZCm1tzUXAVfllwGVlitS8t0waXxlTXaGy2FLz2lVgcRQARltThCF5vedRw-Jkijy7-roG19D8OUnNBCKaZUBi__BRkVginNlMzo-S_0fZhiPj45zrTQhhqeIbaBqjikFCG4dWw6Hz9zk_s24jZGXDbivo04ljNn2-Kp7KD-SWwVZIBvgJRH_Qriz-a_W78ABrOVCA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Law, Richard</creator><creator>Barker, Oliver</creator><creator>Barker, John J.</creator><creator>Hesterkamp, Thomas</creator><creator>Godemann, Robert</creator><creator>Andersen, Ole</creator><creator>Fryatt, Tara</creator><creator>Courtney, Steve</creator><creator>Hallett, Dave</creator><creator>Whittaker, Mark</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>The multiple roles of computational chemistry in fragment-based drug design</title><author>Law, Richard ; Barker, Oliver ; Barker, John J. ; Hesterkamp, Thomas ; Godemann, Robert ; Andersen, Ole ; Fryatt, Tara ; Courtney, Steve ; Hallett, Dave ; Whittaker, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amyloid Precursor Protein Secretases - antagonists &amp; inhibitors</topic><topic>Amyloid Precursor Protein Secretases - chemistry</topic><topic>Animal Anatomy</topic><topic>Aspartic Acid Endopeptidases - antagonists &amp; inhibitors</topic><topic>Aspartic Acid Endopeptidases - chemistry</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational Biology</topic><topic>Computational chemistry</topic><topic>Computer Applications in Chemistry</topic><topic>Crystallography</topic><topic>Drug Discovery</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Histology</topic><topic>HSP90 Heat-Shock Proteins - antagonists &amp; inhibitors</topic><topic>HSP90 Heat-Shock Proteins - chemistry</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Ligands</topic><topic>Molecular biology</topic><topic>Molecular Targeted Therapy</topic><topic>Morphology</topic><topic>Pharmacology</topic><topic>Phosphoric Diester Hydrolases - chemistry</topic><topic>Physical Chemistry</topic><topic>Physical properties</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-bcl-2 - chemistry</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Law, Richard</creatorcontrib><creatorcontrib>Barker, Oliver</creatorcontrib><creatorcontrib>Barker, John J.</creatorcontrib><creatorcontrib>Hesterkamp, Thomas</creatorcontrib><creatorcontrib>Godemann, Robert</creatorcontrib><creatorcontrib>Andersen, Ole</creatorcontrib><creatorcontrib>Fryatt, Tara</creatorcontrib><creatorcontrib>Courtney, Steve</creatorcontrib><creatorcontrib>Hallett, Dave</creatorcontrib><creatorcontrib>Whittaker, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Law, Richard</au><au>Barker, Oliver</au><au>Barker, John J.</au><au>Hesterkamp, Thomas</au><au>Godemann, Robert</au><au>Andersen, Ole</au><au>Fryatt, Tara</au><au>Courtney, Steve</au><au>Hallett, Dave</au><au>Whittaker, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multiple roles of computational chemistry in fragment-based drug design</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>23</volume><issue>8</issue><spage>459</spage><epage>473</epage><pages>459-473</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>19533374</pmid><doi>10.1007/s10822-009-9284-1</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-654X
ispartof Journal of computer-aided molecular design, 2009-08, Vol.23 (8), p.459-473
issn 0920-654X
1573-4951
language eng
recordid cdi_proquest_miscellaneous_36355155
source Springer Link
subjects Amyloid Precursor Protein Secretases - antagonists & inhibitors
Amyloid Precursor Protein Secretases - chemistry
Animal Anatomy
Aspartic Acid Endopeptidases - antagonists & inhibitors
Aspartic Acid Endopeptidases - chemistry
Biotechnology
Chemistry
Chemistry and Materials Science
Computational Biology
Computational chemistry
Computer Applications in Chemistry
Crystallography
Drug Discovery
Enzyme Inhibitors - chemistry
Histology
HSP90 Heat-Shock Proteins - antagonists & inhibitors
HSP90 Heat-Shock Proteins - chemistry
Humans
Hydrogen Bonding
Ligands
Molecular biology
Molecular Targeted Therapy
Morphology
Pharmacology
Phosphoric Diester Hydrolases - chemistry
Physical Chemistry
Physical properties
Protein Binding
Protein Conformation
Proteins
Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors
Proto-Oncogene Proteins c-bcl-2 - chemistry
Small Molecule Libraries - chemistry
Small Molecule Libraries - therapeutic use
title The multiple roles of computational chemistry in fragment-based drug design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multiple%20roles%20of%20computational%20chemistry%20in%20fragment-based%20drug%20design&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Law,%20Richard&rft.date=2009-08-01&rft.volume=23&rft.issue=8&rft.spage=459&rft.epage=473&rft.pages=459-473&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-009-9284-1&rft_dat=%3Cproquest_cross%3E1895384881%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-833be0ec347d627d25fabb24f19866b8169247ac876a7643aba0086f3fe3f5863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=216367072&rft_id=info:pmid/19533374&rfr_iscdi=true