Loading…

Solar Surface Magnetism and Irradiance on Time Scales from Days to the 11-Year Cycle

The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance...

Full description

Saved in:
Bibliographic Details
Published in:Space science reviews 2009-07, Vol.145 (3-4), p.337-380
Main Authors: Domingo, V., Ermolli, I., Fox, P., Fröhlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S. K., Spruit, H. C., Unruh, Y., Vögler, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance variations to solar surface magnetism. Here we review the current status of solar irradiance measurements and modelling efforts based on solar photospheric magnetic fields. Thereby we restrict ourselves to the study of solar variations from days to the solar cycle. Phenomenological models of the solar atmosphere in combination with imaging observations of solar electromagnetic radiation and measurements of the photospheric magnetic field have reached high enough quality to show that a large fraction (at least, about 80%) of the solar irradiance variability can be explained by the radiative effects of the magnetic activity present in the photosphere. Also, significant progress has been made with magnetohydrodynamic simulations of convection that allow us to relate the radiance of the photospheric magnetic structures to the observations.
ISSN:0038-6308
1572-9672
DOI:10.1007/s11214-009-9562-1