Loading…

Selection of Optimal Location and Size of Multiple Distributed Generations by Using Kalman Filter Algorithm

Increase in power consumption can cause serious stability problems in electric power systems if there are no ongoing or impending construction projects of new power plants or transmission lines. Additionally, such increase can result in large power losses of the system. In costly and environmentally...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2009-08, Vol.24 (3), p.1393-1400
Main Authors: Lee, Soo-Hyoung, Park, Jung-Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increase in power consumption can cause serious stability problems in electric power systems if there are no ongoing or impending construction projects of new power plants or transmission lines. Additionally, such increase can result in large power losses of the system. In costly and environmentally effective manner to avoid constructing the new infrastructures such as power plants, transmission lines, etc., the distributed generation (DG) has been paid great attention so far as a potential solution for these problems. The beneficial effects of DG mainly depend on its location and size. Therefore, selection of optimal location and size of the DG is a necessary process to maintain the stability and reliability of existing system effectively before it is connected to a power grid. However, the systematic and cardinal rule for this issue is still an open question. In this paper, a method to determine the optimal locations of multiple DGs is proposed by considering power loss. Also, their optimal sizes are determined by using the Kalman filter algorithm.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2009.2016540