Loading…

Chemical composition and antimicrobial activity of Citrus essences on honeybee bacterial pathogen Paenibacillus larvae, the causal agent of American foulbrood

Antimicrobial properties and chemical composition of four citrus fruit essential oils to control Paenibacillus larvae, the causal agent of American foulbrood disease (AFB) were determined. This honeybee larvae disease occurs throughout the world and is found in many beekeeping areas of Argentina. Ci...

Full description

Saved in:
Bibliographic Details
Published in:World journal of microbiology & biotechnology 2008-10, Vol.24 (10), p.2067-2072
Main Authors: Fuselli, Sandra R, García de la Rosa, Susana B, Eguaras, Martín J, Fritz, Rosalía
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antimicrobial properties and chemical composition of four citrus fruit essential oils to control Paenibacillus larvae, the causal agent of American foulbrood disease (AFB) were determined. This honeybee larvae disease occurs throughout the world and is found in many beekeeping areas of Argentina. Citrus fruit essential oils tested were those from grapefruit (Citrus paradisi), sweet orange (Citrus sinensis), mandarin (Citrus nobilis) and lemon (Citrus limon). The components of the essential oils were identified by SPME-GC/MS analysis. The antimicrobial activity of the oils against P. larvae were determined by the broth microdilution method. Two way ANOVA tests for minimum inhibitory concentrations (MICs) data and minimal bactericide concentrations (MBCs) data, indicated significant differences between the strains and the oils tested. The antimicrobial assays showed that the oil of C. paradisi inhibited the bacterial strains at the lowest concentrations tested, MICs and MBCs averages of 385.0 mg/l and 770.0 mg/l, respectively. This property could be attributed to the kind and percentage of the volatile components of the oil, like limonene (69.9%) and myrcene (9.6%). The use of essential oils or their specific volatile components individually against pests related to food provision may represent an alternative scope for the control of this serious disease because it does not leave toxic chemical residues in honey nor in its by products.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-008-9711-9