Loading…
Impact of BrO on dimethylsulfide in the remote marine boundary layer
We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation s...
Saved in:
Published in: | Geophysical research letters 2010-01, Vol.37 (2), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 37 |
creator | Breider, T. J. Chipperfield, M. P. Richards, N. A. D. Carslaw, K. S. Mann, G. W. Spracklen, D. V. |
description | We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation sink. This effect is most profound over the SH oceans where low NOx concentrations and a high sea salt aerosol source, coupled with high DMS concentrations, drives a large contribution of BrO to DMS oxidation (>20%). Bromine chemistry also results in an 18% reduction in the global DMS burden and lifetime. In addition, when we use an alternative DMS source parameterization resulting in a factor 2 increase in DMS flux the release of bromine from sea salt aerosol increases by 50–60% in the southern hemisphere summer because of additional aerosol acidity. This suggests a possible DMS‐SO2‐sea salt‐BrO marine aerosol feedback mechanism that acts to reduce the sensitivity of the DMS lifetime to increases in DMS emission. |
doi_str_mv | 10.1029/2009GL040868 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36397306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36397306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEsvCjR9gIYE4EJixYzs50gKh0kIBgXq0XGeiuuRjayeC_HtcbVUhDuU0o5nnfe2ZYewpwmsEUb8RAHWzgxIqXd1jG6zLsqgAzH22yZ2cC6MfskcpXQKABIkb9u5k2Ds_86njR_GUTyNvw0Dzxdqnpe9CSzyMfL4gHmmYZuKDi2Ekfj4tY-viynu3UnzMHnSuT_TkJm7Zjw_vvx9_LHanzcnx213hlRFQSDQS2xZ0LQWRqs9V5Tsy-S_gDKEp61xFU7fgtfcSUFMLnUEjOlTGV3LLXhx893G6WijNdgjJU9-7kaYlWallbSTo_4ICZYmVkRl8eSeIuhRCyFpdez77B72cljjmea3RWBqB-e0te3WAfJxSitTZfQx5Z6tFsNc3sn_fKOPPbzxd8q7voht9SLcaIRQqqDBz4sD9Cj2td3ra5ttOaFVCFhUHUUgz_b4VufjTaiONsmefG_v17JPABo_sF_kHcLSrCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>761472197</pqid></control><display><type>article</type><title>Impact of BrO on dimethylsulfide in the remote marine boundary layer</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Breider, T. J. ; Chipperfield, M. P. ; Richards, N. A. D. ; Carslaw, K. S. ; Mann, G. W. ; Spracklen, D. V.</creator><creatorcontrib>Breider, T. J. ; Chipperfield, M. P. ; Richards, N. A. D. ; Carslaw, K. S. ; Mann, G. W. ; Spracklen, D. V.</creatorcontrib><description>We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation sink. This effect is most profound over the SH oceans where low NOx concentrations and a high sea salt aerosol source, coupled with high DMS concentrations, drives a large contribution of BrO to DMS oxidation (>20%). Bromine chemistry also results in an 18% reduction in the global DMS burden and lifetime. In addition, when we use an alternative DMS source parameterization resulting in a factor 2 increase in DMS flux the release of bromine from sea salt aerosol increases by 50–60% in the southern hemisphere summer because of additional aerosol acidity. This suggests a possible DMS‐SO2‐sea salt‐BrO marine aerosol feedback mechanism that acts to reduce the sensitivity of the DMS lifetime to increases in DMS emission.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL040868</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Acidity ; Aerosols ; Atmospheric aerosols ; Atmospheric sciences ; Boundary layer ; Boundary layers ; Bromine ; Chemical transport ; Climate change ; DMS ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Feedback ; Geophysics ; halogen ; Marine ; Ocean-atmosphere interaction ; Oceans ; Oxidation ; Parametrization ; Salts ; Sulfur dioxide ; Troposphere</subject><ispartof>Geophysical research letters, 2010-01, Vol.37 (2), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83</citedby><cites>FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL040868$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL040868$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22515081$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Breider, T. J.</creatorcontrib><creatorcontrib>Chipperfield, M. P.</creatorcontrib><creatorcontrib>Richards, N. A. D.</creatorcontrib><creatorcontrib>Carslaw, K. S.</creatorcontrib><creatorcontrib>Mann, G. W.</creatorcontrib><creatorcontrib>Spracklen, D. V.</creatorcontrib><title>Impact of BrO on dimethylsulfide in the remote marine boundary layer</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation sink. This effect is most profound over the SH oceans where low NOx concentrations and a high sea salt aerosol source, coupled with high DMS concentrations, drives a large contribution of BrO to DMS oxidation (>20%). Bromine chemistry also results in an 18% reduction in the global DMS burden and lifetime. In addition, when we use an alternative DMS source parameterization resulting in a factor 2 increase in DMS flux the release of bromine from sea salt aerosol increases by 50–60% in the southern hemisphere summer because of additional aerosol acidity. This suggests a possible DMS‐SO2‐sea salt‐BrO marine aerosol feedback mechanism that acts to reduce the sensitivity of the DMS lifetime to increases in DMS emission.</description><subject>Acidity</subject><subject>Aerosols</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric sciences</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Bromine</subject><subject>Chemical transport</subject><subject>Climate change</subject><subject>DMS</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Geophysics</subject><subject>halogen</subject><subject>Marine</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceans</subject><subject>Oxidation</subject><subject>Parametrization</subject><subject>Salts</subject><subject>Sulfur dioxide</subject><subject>Troposphere</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEsvCjR9gIYE4EJixYzs50gKh0kIBgXq0XGeiuuRjayeC_HtcbVUhDuU0o5nnfe2ZYewpwmsEUb8RAHWzgxIqXd1jG6zLsqgAzH22yZ2cC6MfskcpXQKABIkb9u5k2Ds_86njR_GUTyNvw0Dzxdqnpe9CSzyMfL4gHmmYZuKDi2Ekfj4tY-viynu3UnzMHnSuT_TkJm7Zjw_vvx9_LHanzcnx213hlRFQSDQS2xZ0LQWRqs9V5Tsy-S_gDKEp61xFU7fgtfcSUFMLnUEjOlTGV3LLXhx893G6WijNdgjJU9-7kaYlWallbSTo_4ICZYmVkRl8eSeIuhRCyFpdez77B72cljjmea3RWBqB-e0te3WAfJxSitTZfQx5Z6tFsNc3sn_fKOPPbzxd8q7voht9SLcaIRQqqDBz4sD9Cj2td3ra5ttOaFVCFhUHUUgz_b4VufjTaiONsmefG_v17JPABo_sF_kHcLSrCg</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Breider, T. J.</creator><creator>Chipperfield, M. P.</creator><creator>Richards, N. A. D.</creator><creator>Carslaw, K. S.</creator><creator>Mann, G. W.</creator><creator>Spracklen, D. V.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SU</scope><scope>C1K</scope><scope>H95</scope><scope>7SM</scope></search><sort><creationdate>201001</creationdate><title>Impact of BrO on dimethylsulfide in the remote marine boundary layer</title><author>Breider, T. J. ; Chipperfield, M. P. ; Richards, N. A. D. ; Carslaw, K. S. ; Mann, G. W. ; Spracklen, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acidity</topic><topic>Aerosols</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric sciences</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Bromine</topic><topic>Chemical transport</topic><topic>Climate change</topic><topic>DMS</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Geophysics</topic><topic>halogen</topic><topic>Marine</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceans</topic><topic>Oxidation</topic><topic>Parametrization</topic><topic>Salts</topic><topic>Sulfur dioxide</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breider, T. J.</creatorcontrib><creatorcontrib>Chipperfield, M. P.</creatorcontrib><creatorcontrib>Richards, N. A. D.</creatorcontrib><creatorcontrib>Carslaw, K. S.</creatorcontrib><creatorcontrib>Mann, G. W.</creatorcontrib><creatorcontrib>Spracklen, D. V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breider, T. J.</au><au>Chipperfield, M. P.</au><au>Richards, N. A. D.</au><au>Carslaw, K. S.</au><au>Mann, G. W.</au><au>Spracklen, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of BrO on dimethylsulfide in the remote marine boundary layer</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2010-01</date><risdate>2010</risdate><volume>37</volume><issue>2</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation sink. This effect is most profound over the SH oceans where low NOx concentrations and a high sea salt aerosol source, coupled with high DMS concentrations, drives a large contribution of BrO to DMS oxidation (>20%). Bromine chemistry also results in an 18% reduction in the global DMS burden and lifetime. In addition, when we use an alternative DMS source parameterization resulting in a factor 2 increase in DMS flux the release of bromine from sea salt aerosol increases by 50–60% in the southern hemisphere summer because of additional aerosol acidity. This suggests a possible DMS‐SO2‐sea salt‐BrO marine aerosol feedback mechanism that acts to reduce the sensitivity of the DMS lifetime to increases in DMS emission.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL040868</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2010-01, Vol.37 (2), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_36397306 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Acidity Aerosols Atmospheric aerosols Atmospheric sciences Boundary layer Boundary layers Bromine Chemical transport Climate change DMS Earth Earth sciences Earth, ocean, space Exact sciences and technology Feedback Geophysics halogen Marine Ocean-atmosphere interaction Oceans Oxidation Parametrization Salts Sulfur dioxide Troposphere |
title | Impact of BrO on dimethylsulfide in the remote marine boundary layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20BrO%20on%20dimethylsulfide%20in%20the%20remote%20marine%20boundary%20layer&rft.jtitle=Geophysical%20research%20letters&rft.au=Breider,%20T.%20J.&rft.date=2010-01&rft.volume=37&rft.issue=2&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL040868&rft_dat=%3Cproquest_cross%3E36397306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=761472197&rft_id=info:pmid/&rfr_iscdi=true |