Loading…

Impact of BrO on dimethylsulfide in the remote marine boundary layer

We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation s...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2010-01, Vol.37 (2), p.n/a
Main Authors: Breider, T. J., Chipperfield, M. P., Richards, N. A. D., Carslaw, K. S., Mann, G. W., Spracklen, D. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83
cites cdi_FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83
container_end_page n/a
container_issue 2
container_start_page
container_title Geophysical research letters
container_volume 37
creator Breider, T. J.
Chipperfield, M. P.
Richards, N. A. D.
Carslaw, K. S.
Mann, G. W.
Spracklen, D. V.
description We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation sink. This effect is most profound over the SH oceans where low NOx concentrations and a high sea salt aerosol source, coupled with high DMS concentrations, drives a large contribution of BrO to DMS oxidation (>20%). Bromine chemistry also results in an 18% reduction in the global DMS burden and lifetime. In addition, when we use an alternative DMS source parameterization resulting in a factor 2 increase in DMS flux the release of bromine from sea salt aerosol increases by 50–60% in the southern hemisphere summer because of additional aerosol acidity. This suggests a possible DMS‐SO2‐sea salt‐BrO marine aerosol feedback mechanism that acts to reduce the sensitivity of the DMS lifetime to increases in DMS emission.
doi_str_mv 10.1029/2009GL040868
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36397306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36397306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEsvCjR9gIYE4EJixYzs50gKh0kIBgXq0XGeiuuRjayeC_HtcbVUhDuU0o5nnfe2ZYewpwmsEUb8RAHWzgxIqXd1jG6zLsqgAzH22yZ2cC6MfskcpXQKABIkb9u5k2Ds_86njR_GUTyNvw0Dzxdqnpe9CSzyMfL4gHmmYZuKDi2Ekfj4tY-viynu3UnzMHnSuT_TkJm7Zjw_vvx9_LHanzcnx213hlRFQSDQS2xZ0LQWRqs9V5Tsy-S_gDKEp61xFU7fgtfcSUFMLnUEjOlTGV3LLXhx893G6WijNdgjJU9-7kaYlWallbSTo_4ICZYmVkRl8eSeIuhRCyFpdez77B72cljjmea3RWBqB-e0te3WAfJxSitTZfQx5Z6tFsNc3sn_fKOPPbzxd8q7voht9SLcaIRQqqDBz4sD9Cj2td3ra5ttOaFVCFhUHUUgz_b4VufjTaiONsmefG_v17JPABo_sF_kHcLSrCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>761472197</pqid></control><display><type>article</type><title>Impact of BrO on dimethylsulfide in the remote marine boundary layer</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Breider, T. J. ; Chipperfield, M. P. ; Richards, N. A. D. ; Carslaw, K. S. ; Mann, G. W. ; Spracklen, D. V.</creator><creatorcontrib>Breider, T. J. ; Chipperfield, M. P. ; Richards, N. A. D. ; Carslaw, K. S. ; Mann, G. W. ; Spracklen, D. V.</creatorcontrib><description>We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation sink. This effect is most profound over the SH oceans where low NOx concentrations and a high sea salt aerosol source, coupled with high DMS concentrations, drives a large contribution of BrO to DMS oxidation (&gt;20%). Bromine chemistry also results in an 18% reduction in the global DMS burden and lifetime. In addition, when we use an alternative DMS source parameterization resulting in a factor 2 increase in DMS flux the release of bromine from sea salt aerosol increases by 50–60% in the southern hemisphere summer because of additional aerosol acidity. This suggests a possible DMS‐SO2‐sea salt‐BrO marine aerosol feedback mechanism that acts to reduce the sensitivity of the DMS lifetime to increases in DMS emission.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL040868</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Acidity ; Aerosols ; Atmospheric aerosols ; Atmospheric sciences ; Boundary layer ; Boundary layers ; Bromine ; Chemical transport ; Climate change ; DMS ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Feedback ; Geophysics ; halogen ; Marine ; Ocean-atmosphere interaction ; Oceans ; Oxidation ; Parametrization ; Salts ; Sulfur dioxide ; Troposphere</subject><ispartof>Geophysical research letters, 2010-01, Vol.37 (2), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83</citedby><cites>FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL040868$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL040868$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22515081$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Breider, T. J.</creatorcontrib><creatorcontrib>Chipperfield, M. P.</creatorcontrib><creatorcontrib>Richards, N. A. D.</creatorcontrib><creatorcontrib>Carslaw, K. S.</creatorcontrib><creatorcontrib>Mann, G. W.</creatorcontrib><creatorcontrib>Spracklen, D. V.</creatorcontrib><title>Impact of BrO on dimethylsulfide in the remote marine boundary layer</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation sink. This effect is most profound over the SH oceans where low NOx concentrations and a high sea salt aerosol source, coupled with high DMS concentrations, drives a large contribution of BrO to DMS oxidation (&gt;20%). Bromine chemistry also results in an 18% reduction in the global DMS burden and lifetime. In addition, when we use an alternative DMS source parameterization resulting in a factor 2 increase in DMS flux the release of bromine from sea salt aerosol increases by 50–60% in the southern hemisphere summer because of additional aerosol acidity. This suggests a possible DMS‐SO2‐sea salt‐BrO marine aerosol feedback mechanism that acts to reduce the sensitivity of the DMS lifetime to increases in DMS emission.</description><subject>Acidity</subject><subject>Aerosols</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric sciences</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Bromine</subject><subject>Chemical transport</subject><subject>Climate change</subject><subject>DMS</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Geophysics</subject><subject>halogen</subject><subject>Marine</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceans</subject><subject>Oxidation</subject><subject>Parametrization</subject><subject>Salts</subject><subject>Sulfur dioxide</subject><subject>Troposphere</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEsvCjR9gIYE4EJixYzs50gKh0kIBgXq0XGeiuuRjayeC_HtcbVUhDuU0o5nnfe2ZYewpwmsEUb8RAHWzgxIqXd1jG6zLsqgAzH22yZ2cC6MfskcpXQKABIkb9u5k2Ds_86njR_GUTyNvw0Dzxdqnpe9CSzyMfL4gHmmYZuKDi2Ekfj4tY-viynu3UnzMHnSuT_TkJm7Zjw_vvx9_LHanzcnx213hlRFQSDQS2xZ0LQWRqs9V5Tsy-S_gDKEp61xFU7fgtfcSUFMLnUEjOlTGV3LLXhx893G6WijNdgjJU9-7kaYlWallbSTo_4ICZYmVkRl8eSeIuhRCyFpdez77B72cljjmea3RWBqB-e0te3WAfJxSitTZfQx5Z6tFsNc3sn_fKOPPbzxd8q7voht9SLcaIRQqqDBz4sD9Cj2td3ra5ttOaFVCFhUHUUgz_b4VufjTaiONsmefG_v17JPABo_sF_kHcLSrCg</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Breider, T. J.</creator><creator>Chipperfield, M. P.</creator><creator>Richards, N. A. D.</creator><creator>Carslaw, K. S.</creator><creator>Mann, G. W.</creator><creator>Spracklen, D. V.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SU</scope><scope>C1K</scope><scope>H95</scope><scope>7SM</scope></search><sort><creationdate>201001</creationdate><title>Impact of BrO on dimethylsulfide in the remote marine boundary layer</title><author>Breider, T. J. ; Chipperfield, M. P. ; Richards, N. A. D. ; Carslaw, K. S. ; Mann, G. W. ; Spracklen, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acidity</topic><topic>Aerosols</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric sciences</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Bromine</topic><topic>Chemical transport</topic><topic>Climate change</topic><topic>DMS</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Geophysics</topic><topic>halogen</topic><topic>Marine</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceans</topic><topic>Oxidation</topic><topic>Parametrization</topic><topic>Salts</topic><topic>Sulfur dioxide</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breider, T. J.</creatorcontrib><creatorcontrib>Chipperfield, M. P.</creatorcontrib><creatorcontrib>Richards, N. A. D.</creatorcontrib><creatorcontrib>Carslaw, K. S.</creatorcontrib><creatorcontrib>Mann, G. W.</creatorcontrib><creatorcontrib>Spracklen, D. V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breider, T. J.</au><au>Chipperfield, M. P.</au><au>Richards, N. A. D.</au><au>Carslaw, K. S.</au><au>Mann, G. W.</au><au>Spracklen, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of BrO on dimethylsulfide in the remote marine boundary layer</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2010-01</date><risdate>2010</risdate><volume>37</volume><issue>2</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>We have used a global three‐dimensional chemical transport model coupled to a detailed size‐resolved aerosol microphysics module to study the impact of BrO on dimethylsulfide (DMS) in the remote marine boundary layer. Our model results suggest BrO contributes 16% of the global annual DMS oxidation sink. This effect is most profound over the SH oceans where low NOx concentrations and a high sea salt aerosol source, coupled with high DMS concentrations, drives a large contribution of BrO to DMS oxidation (&gt;20%). Bromine chemistry also results in an 18% reduction in the global DMS burden and lifetime. In addition, when we use an alternative DMS source parameterization resulting in a factor 2 increase in DMS flux the release of bromine from sea salt aerosol increases by 50–60% in the southern hemisphere summer because of additional aerosol acidity. This suggests a possible DMS‐SO2‐sea salt‐BrO marine aerosol feedback mechanism that acts to reduce the sensitivity of the DMS lifetime to increases in DMS emission.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL040868</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2010-01, Vol.37 (2), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_36397306
source Wiley-Blackwell AGU Digital Archive
subjects Acidity
Aerosols
Atmospheric aerosols
Atmospheric sciences
Boundary layer
Boundary layers
Bromine
Chemical transport
Climate change
DMS
Earth
Earth sciences
Earth, ocean, space
Exact sciences and technology
Feedback
Geophysics
halogen
Marine
Ocean-atmosphere interaction
Oceans
Oxidation
Parametrization
Salts
Sulfur dioxide
Troposphere
title Impact of BrO on dimethylsulfide in the remote marine boundary layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20BrO%20on%20dimethylsulfide%20in%20the%20remote%20marine%20boundary%20layer&rft.jtitle=Geophysical%20research%20letters&rft.au=Breider,%20T.%20J.&rft.date=2010-01&rft.volume=37&rft.issue=2&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL040868&rft_dat=%3Cproquest_cross%3E36397306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5720-31731dd06932ee59b58cfe70000a7e1749ee5179d0c6cc3016ed0f7172f157c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=761472197&rft_id=info:pmid/&rfr_iscdi=true