Loading…

Application of thymol and iprodione to control garlic white rot (Sclerotium cepivorum) and its effect on soil microbial communities

The effect of different dosages of thymol alone, iprodione alone and combinations of thymol and iprodione on white rot disease of garlic and its impact on soil microbial community structure were investigated under greenhouse conditions. Thymol alone or in combination with the fungicide iprodione did...

Full description

Saved in:
Bibliographic Details
Published in:World journal of microbiology & biotechnology 2010-01, Vol.26 (1), p.161-170
Main Authors: Miñambres, Guadalupe G, Conles, Martha Y, Lucini, Enrique I, Verdenelli, Romina A, Meriles, José M, Zygadlo, Julio A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of different dosages of thymol alone, iprodione alone and combinations of thymol and iprodione on white rot disease of garlic and its impact on soil microbial community structure were investigated under greenhouse conditions. Thymol alone or in combination with the fungicide iprodione did not appear to reduce either white rot incidence or soil sclerotia density as compared to an infected control. However, iprodione alone or in combination with thymol reduced soil fungal biomass. In addition, iprodione alone decreased soil microbial activity as estimated by fluorescein diacetate (FDA). Soil bacterial community structure as estimated by phospholipid fatty acid (PLFA) profiles was also was affected by both thymol and iprodione applications. The correlation biplot of the individual PLFAs and biocide treatment indicated that the treatments with thymol alone increased cyclopropyl fatty acid (cy17:0 and cy19:0), while the treatments with iprodione alone increased some saturated and branched fatty acids (principally i16:0, a15:0 and 18:0). In addition, taking into account PLFA biomarkers, thymol applications reduced Gram-negative bacteria in soil. To our knowledge, this research is the first report about the effect of a monoterpene (thymol) on soil microflora.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-009-0155-7