Loading…

Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone

In the article we deal with the homogenization of a boundary-value problem for the Poisson equation in a singularly perturbed two-dimensional junction of a new type. This junction consists of a body and a large number of thin rods, which join the body through the random transmission zone with rapidl...

Full description

Saved in:
Bibliographic Details
Published in:Applicable analysis 2009-10, Vol.88 (10-11), p.1543-1562
Main Authors: Chechkin, G.A., Chechkina, T.P., D'Apice, C., De Maio, U., Mel'nyk, T.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-f9b7c5a9ac6e1e77b8e8e4438c76db46e53a98cc4d2ffd9bb5bb5b3671df7863
cites cdi_FETCH-LOGICAL-c404t-f9b7c5a9ac6e1e77b8e8e4438c76db46e53a98cc4d2ffd9bb5bb5b3671df7863
container_end_page 1562
container_issue 10-11
container_start_page 1543
container_title Applicable analysis
container_volume 88
creator Chechkin, G.A.
Chechkina, T.P.
D'Apice, C.
De Maio, U.
Mel'nyk, T.A.
description In the article we deal with the homogenization of a boundary-value problem for the Poisson equation in a singularly perturbed two-dimensional junction of a new type. This junction consists of a body and a large number of thin rods, which join the body through the random transmission zone with rapidly oscillating boundary. Inhomogeneous Fourier boundary conditions with perturbed coefficients are set on the boundaries of the thin rods and with random perturbed coefficients on the boundary of the transmission zone. We prove the homogenization theorems and the convergence of the energy integrals. It is shown that there are three qualitatively different cases in the asymptotic behaviour of the solutions.
doi_str_mv 10.1080/00036810902994268
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_36421846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36421846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f9b7c5a9ac6e1e77b8e8e4438c76db46e53a98cc4d2ffd9bb5bb5b3671df7863</originalsourceid><addsrcrecordid>eNqFkE9LBCEYhyUK2rY-QDfp0G1KZxx1oMsS_YOFLh26ieMouTujmzrV9ulz2E5FBMJ7-D3P68sPgFOMLjDi6BIhVFGOUYPKpiEl5XtghmtaFTUiz_tgNuVFBvAhOIpxhRAueU1nYL2I22GTfLIKSif7bbQRegMlbP3oOhm2xZvsRw03wbe9HqB1OVMyKtlpmF6sWsPV6FSy3sF3m15yGqTr_ABTnnGwMU7Rp3f6GBwY2Ud98j3n4On25un6vlg-3j1cL5aFIoikwjQtU7VspKIaa8ZarrkmpOKK0a4lVNeVbLhSpCuN6Zq2radXUYY7wzit5uB8tzaf_DrqmEQ-Qum-l077MYqKkhJzMoFnP8CVH0MuIYoS15wgxsoM4R2kgo8xaCM2wQ65F4GRmKoXv6rPDts51hkfBvnuQ9-JJLe9Dya3omz8bYn0kbJ59a9Z_f3xF40Fnb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215840772</pqid></control><display><type>article</type><title>Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone</title><source>Taylor and Francis Science and Technology Collection</source><creator>Chechkin, G.A. ; Chechkina, T.P. ; D'Apice, C. ; De Maio, U. ; Mel'nyk, T.A.</creator><creatorcontrib>Chechkin, G.A. ; Chechkina, T.P. ; D'Apice, C. ; De Maio, U. ; Mel'nyk, T.A.</creatorcontrib><description>In the article we deal with the homogenization of a boundary-value problem for the Poisson equation in a singularly perturbed two-dimensional junction of a new type. This junction consists of a body and a large number of thin rods, which join the body through the random transmission zone with rapidly oscillating boundary. Inhomogeneous Fourier boundary conditions with perturbed coefficients are set on the boundaries of the thin rods and with random perturbed coefficients on the boundary of the transmission zone. We prove the homogenization theorems and the convergence of the energy integrals. It is shown that there are three qualitatively different cases in the asymptotic behaviour of the solutions.</description><identifier>ISSN: 0003-6811</identifier><identifier>EISSN: 1563-504X</identifier><identifier>DOI: 10.1080/00036810902994268</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Applied mathematics ; Differential equations ; Dirichlet problem ; Fourier transforms ; homogenization ; Poisson distribution ; random boundary ; rapidly oscillating boundary ; thick junction</subject><ispartof>Applicable analysis, 2009-10, Vol.88 (10-11), p.1543-1562</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2009</rights><rights>Copyright Taylor &amp; Francis Ltd. Oct/Nov 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f9b7c5a9ac6e1e77b8e8e4438c76db46e53a98cc4d2ffd9bb5bb5b3671df7863</citedby><cites>FETCH-LOGICAL-c404t-f9b7c5a9ac6e1e77b8e8e4438c76db46e53a98cc4d2ffd9bb5bb5b3671df7863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chechkin, G.A.</creatorcontrib><creatorcontrib>Chechkina, T.P.</creatorcontrib><creatorcontrib>D'Apice, C.</creatorcontrib><creatorcontrib>De Maio, U.</creatorcontrib><creatorcontrib>Mel'nyk, T.A.</creatorcontrib><title>Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone</title><title>Applicable analysis</title><description>In the article we deal with the homogenization of a boundary-value problem for the Poisson equation in a singularly perturbed two-dimensional junction of a new type. This junction consists of a body and a large number of thin rods, which join the body through the random transmission zone with rapidly oscillating boundary. Inhomogeneous Fourier boundary conditions with perturbed coefficients are set on the boundaries of the thin rods and with random perturbed coefficients on the boundary of the transmission zone. We prove the homogenization theorems and the convergence of the energy integrals. It is shown that there are three qualitatively different cases in the asymptotic behaviour of the solutions.</description><subject>Applied mathematics</subject><subject>Differential equations</subject><subject>Dirichlet problem</subject><subject>Fourier transforms</subject><subject>homogenization</subject><subject>Poisson distribution</subject><subject>random boundary</subject><subject>rapidly oscillating boundary</subject><subject>thick junction</subject><issn>0003-6811</issn><issn>1563-504X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LBCEYhyUK2rY-QDfp0G1KZxx1oMsS_YOFLh26ieMouTujmzrV9ulz2E5FBMJ7-D3P68sPgFOMLjDi6BIhVFGOUYPKpiEl5XtghmtaFTUiz_tgNuVFBvAhOIpxhRAueU1nYL2I22GTfLIKSif7bbQRegMlbP3oOhm2xZvsRw03wbe9HqB1OVMyKtlpmF6sWsPV6FSy3sF3m15yGqTr_ABTnnGwMU7Rp3f6GBwY2Ud98j3n4On25un6vlg-3j1cL5aFIoikwjQtU7VspKIaa8ZarrkmpOKK0a4lVNeVbLhSpCuN6Zq2radXUYY7wzit5uB8tzaf_DrqmEQ-Qum-l077MYqKkhJzMoFnP8CVH0MuIYoS15wgxsoM4R2kgo8xaCM2wQ65F4GRmKoXv6rPDts51hkfBvnuQ9-JJLe9Dya3omz8bYn0kbJ59a9Z_f3xF40Fnb8</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Chechkin, G.A.</creator><creator>Chechkina, T.P.</creator><creator>D'Apice, C.</creator><creator>De Maio, U.</creator><creator>Mel'nyk, T.A.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20091001</creationdate><title>Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone</title><author>Chechkin, G.A. ; Chechkina, T.P. ; D'Apice, C. ; De Maio, U. ; Mel'nyk, T.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f9b7c5a9ac6e1e77b8e8e4438c76db46e53a98cc4d2ffd9bb5bb5b3671df7863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Differential equations</topic><topic>Dirichlet problem</topic><topic>Fourier transforms</topic><topic>homogenization</topic><topic>Poisson distribution</topic><topic>random boundary</topic><topic>rapidly oscillating boundary</topic><topic>thick junction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chechkin, G.A.</creatorcontrib><creatorcontrib>Chechkina, T.P.</creatorcontrib><creatorcontrib>D'Apice, C.</creatorcontrib><creatorcontrib>De Maio, U.</creatorcontrib><creatorcontrib>Mel'nyk, T.A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applicable analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chechkin, G.A.</au><au>Chechkina, T.P.</au><au>D'Apice, C.</au><au>De Maio, U.</au><au>Mel'nyk, T.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone</atitle><jtitle>Applicable analysis</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>88</volume><issue>10-11</issue><spage>1543</spage><epage>1562</epage><pages>1543-1562</pages><issn>0003-6811</issn><eissn>1563-504X</eissn><abstract>In the article we deal with the homogenization of a boundary-value problem for the Poisson equation in a singularly perturbed two-dimensional junction of a new type. This junction consists of a body and a large number of thin rods, which join the body through the random transmission zone with rapidly oscillating boundary. Inhomogeneous Fourier boundary conditions with perturbed coefficients are set on the boundaries of the thin rods and with random perturbed coefficients on the boundary of the transmission zone. We prove the homogenization theorems and the convergence of the energy integrals. It is shown that there are three qualitatively different cases in the asymptotic behaviour of the solutions.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00036810902994268</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6811
ispartof Applicable analysis, 2009-10, Vol.88 (10-11), p.1543-1562
issn 0003-6811
1563-504X
language eng
recordid cdi_proquest_miscellaneous_36421846
source Taylor and Francis Science and Technology Collection
subjects Applied mathematics
Differential equations
Dirichlet problem
Fourier transforms
homogenization
Poisson distribution
random boundary
rapidly oscillating boundary
thick junction
title Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20analysis%20of%20a%20boundary-value%20problem%20in%20a%20cascade%20thick%20junction%20with%20a%20random%20transmission%20zone&rft.jtitle=Applicable%20analysis&rft.au=Chechkin,%20G.A.&rft.date=2009-10-01&rft.volume=88&rft.issue=10-11&rft.spage=1543&rft.epage=1562&rft.pages=1543-1562&rft.issn=0003-6811&rft.eissn=1563-504X&rft_id=info:doi/10.1080/00036810902994268&rft_dat=%3Cproquest_infor%3E36421846%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-f9b7c5a9ac6e1e77b8e8e4438c76db46e53a98cc4d2ffd9bb5bb5b3671df7863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215840772&rft_id=info:pmid/&rfr_iscdi=true