Loading…

Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

Interferometric Synthetic Aperture Radar (InSAR) data, gathered over the In Salah CO2 storage project in Algeria, provide an early indication that satellite‐based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected mass of 3 million tons of carbon di...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2010-02, Vol.37 (3), p.np-n/a
Main Authors: Vasco, D. W., Rucci, A., Ferretti, A., Novali, F., Bissell, R. C., Ringrose, P. S., Mathieson, A. S., Wright, I. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interferometric Synthetic Aperture Radar (InSAR) data, gathered over the In Salah CO2 storage project in Algeria, provide an early indication that satellite‐based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected mass of 3 million tons of carbon dioxide from one of the first large‐scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques, we are able to infer flow within the reservoir layer and within a seismically detected fracture/fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.
ISSN:0094-8276
1944-8007
DOI:10.1029/2009GL041544