Loading…
Spatial solitons supported by localized gain in nonlinear optical waveguides
We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization account...
Saved in:
Published in: | The European physical journal. ST, Special topics Special topics, 2009-06, Vol.173 (1), p.233-243 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3 |
container_end_page | 243 |
container_issue | 1 |
container_start_page | 233 |
container_title | The European physical journal. ST, Special topics |
container_volume | 173 |
creator | Lam, C.-K. Malomed, B. A. Chow, K. W. Wai, P.K.A. |
description | We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization accounted for by the delta-function, a solution for pinned solitons is found in an analytical form, with one relation imposed on parameters of the model. The exponentially localized solution becomes weakly localized in the limit case of vanishing background loss. Numerical solutions, with the delta-function replaced by a finite-width approximation, demonstrate stability of the pinned solitons and their existence in the general case, when the analytical solution is not available. If the gain-localization region and the size of the soliton are comparable, the static soliton is replaced by a stable breather. |
doi_str_mv | 10.1140/epjst/e2009-01076-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36429144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36429144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKu_wMuevK1NNtns5ihFrVDwoJ5DNpmUlDRZk12l_nrXVq_CwMww7z2YD6Frgm8JYXgB_TYPC6gwFiUmuOFle4JmRNSk5AyT07-Z1vU5ush5i3HNK0FnaP3Sq8EpX-To3RBDLvLY9zENYIpuX_iolXdf07JRLhRThRi8C6BSEfvBTdfiU33AZnQG8iU6s8pnuPrtc_T2cP-6XJXr58en5d261FSQoYTGtFwZ09hKaN42uqN1I2yj27arGlYBpVQABmGtUbqmFivFKaPctMyA7egc3Rxz-xTfR8iD3LmswXsVII5ZUs4qQRibhPQo1CnmnMDKPrmdSntJsPwhJw_k5IGcPJCT7eRiR1ee1GEDSW7jmML00b-2b1JTdpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36429144</pqid></control><display><type>article</type><title>Spatial solitons supported by localized gain in nonlinear optical waveguides</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Lam, C.-K. ; Malomed, B. A. ; Chow, K. W. ; Wai, P.K.A.</creator><creatorcontrib>Lam, C.-K. ; Malomed, B. A. ; Chow, K. W. ; Wai, P.K.A.</creatorcontrib><description>We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization accounted for by the delta-function, a solution for pinned solitons is found in an analytical form, with one relation imposed on parameters of the model. The exponentially localized solution becomes weakly localized in the limit case of vanishing background loss. Numerical solutions, with the delta-function replaced by a finite-width approximation, demonstrate stability of the pinned solitons and their existence in the general case, when the analytical solution is not available. If the gain-localization region and the size of the soliton are comparable, the static soliton is replaced by a stable breather.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2009-01076-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article</subject><ispartof>The European physical journal. ST, Special topics, 2009-06, Vol.173 (1), p.233-243</ispartof><rights>EDP Sciences and Springer 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3</citedby><cites>FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lam, C.-K.</creatorcontrib><creatorcontrib>Malomed, B. A.</creatorcontrib><creatorcontrib>Chow, K. W.</creatorcontrib><creatorcontrib>Wai, P.K.A.</creatorcontrib><title>Spatial solitons supported by localized gain in nonlinear optical waveguides</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization accounted for by the delta-function, a solution for pinned solitons is found in an analytical form, with one relation imposed on parameters of the model. The exponentially localized solution becomes weakly localized in the limit case of vanishing background loss. Numerical solutions, with the delta-function replaced by a finite-width approximation, demonstrate stability of the pinned solitons and their existence in the general case, when the analytical solution is not available. If the gain-localization region and the size of the soliton are comparable, the static soliton is replaced by a stable breather.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKu_wMuevK1NNtns5ihFrVDwoJ5DNpmUlDRZk12l_nrXVq_CwMww7z2YD6Frgm8JYXgB_TYPC6gwFiUmuOFle4JmRNSk5AyT07-Z1vU5ush5i3HNK0FnaP3Sq8EpX-To3RBDLvLY9zENYIpuX_iolXdf07JRLhRThRi8C6BSEfvBTdfiU33AZnQG8iU6s8pnuPrtc_T2cP-6XJXr58en5d261FSQoYTGtFwZ09hKaN42uqN1I2yj27arGlYBpVQABmGtUbqmFivFKaPctMyA7egc3Rxz-xTfR8iD3LmswXsVII5ZUs4qQRibhPQo1CnmnMDKPrmdSntJsPwhJw_k5IGcPJCT7eRiR1ee1GEDSW7jmML00b-2b1JTdpU</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Lam, C.-K.</creator><creator>Malomed, B. A.</creator><creator>Chow, K. W.</creator><creator>Wai, P.K.A.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090601</creationdate><title>Spatial solitons supported by localized gain in nonlinear optical waveguides</title><author>Lam, C.-K. ; Malomed, B. A. ; Chow, K. W. ; Wai, P.K.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, C.-K.</creatorcontrib><creatorcontrib>Malomed, B. A.</creatorcontrib><creatorcontrib>Chow, K. W.</creatorcontrib><creatorcontrib>Wai, P.K.A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, C.-K.</au><au>Malomed, B. A.</au><au>Chow, K. W.</au><au>Wai, P.K.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial solitons supported by localized gain in nonlinear optical waveguides</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>173</volume><issue>1</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization accounted for by the delta-function, a solution for pinned solitons is found in an analytical form, with one relation imposed on parameters of the model. The exponentially localized solution becomes weakly localized in the limit case of vanishing background loss. Numerical solutions, with the delta-function replaced by a finite-width approximation, demonstrate stability of the pinned solitons and their existence in the general case, when the analytical solution is not available. If the gain-localization region and the size of the soliton are comparable, the static soliton is replaced by a stable breather.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjst/e2009-01076-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2009-06, Vol.173 (1), p.233-243 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_miscellaneous_36429144 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Atomic Classical and Continuum Physics Condensed Matter Physics Materials Science Measurement Science and Instrumentation Molecular Optical and Plasma Physics Physics Physics and Astronomy Regular Article |
title | Spatial solitons supported by localized gain in nonlinear optical waveguides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20solitons%20supported%20by%20localized%20gain%20in%20nonlinear%20optical%20waveguides&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Lam,%20C.-K.&rft.date=2009-06-01&rft.volume=173&rft.issue=1&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2009-01076-8&rft_dat=%3Cproquest_cross%3E36429144%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=36429144&rft_id=info:pmid/&rfr_iscdi=true |