Loading…

Spatial solitons supported by localized gain in nonlinear optical waveguides

We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization account...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Special topics, 2009-06, Vol.173 (1), p.233-243
Main Authors: Lam, C.-K., Malomed, B. A., Chow, K. W., Wai, P.K.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3
cites cdi_FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3
container_end_page 243
container_issue 1
container_start_page 233
container_title The European physical journal. ST, Special topics
container_volume 173
creator Lam, C.-K.
Malomed, B. A.
Chow, K. W.
Wai, P.K.A.
description We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization accounted for by the delta-function, a solution for pinned solitons is found in an analytical form, with one relation imposed on parameters of the model. The exponentially localized solution becomes weakly localized in the limit case of vanishing background loss. Numerical solutions, with the delta-function replaced by a finite-width approximation, demonstrate stability of the pinned solitons and their existence in the general case, when the analytical solution is not available. If the gain-localization region and the size of the soliton are comparable, the static soliton is replaced by a stable breather.
doi_str_mv 10.1140/epjst/e2009-01076-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36429144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36429144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKu_wMuevK1NNtns5ihFrVDwoJ5DNpmUlDRZk12l_nrXVq_CwMww7z2YD6Frgm8JYXgB_TYPC6gwFiUmuOFle4JmRNSk5AyT07-Z1vU5ush5i3HNK0FnaP3Sq8EpX-To3RBDLvLY9zENYIpuX_iolXdf07JRLhRThRi8C6BSEfvBTdfiU33AZnQG8iU6s8pnuPrtc_T2cP-6XJXr58en5d261FSQoYTGtFwZ09hKaN42uqN1I2yj27arGlYBpVQABmGtUbqmFivFKaPctMyA7egc3Rxz-xTfR8iD3LmswXsVII5ZUs4qQRibhPQo1CnmnMDKPrmdSntJsPwhJw_k5IGcPJCT7eRiR1ee1GEDSW7jmML00b-2b1JTdpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36429144</pqid></control><display><type>article</type><title>Spatial solitons supported by localized gain in nonlinear optical waveguides</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Lam, C.-K. ; Malomed, B. A. ; Chow, K. W. ; Wai, P.K.A.</creator><creatorcontrib>Lam, C.-K. ; Malomed, B. A. ; Chow, K. W. ; Wai, P.K.A.</creatorcontrib><description>We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization accounted for by the delta-function, a solution for pinned solitons is found in an analytical form, with one relation imposed on parameters of the model. The exponentially localized solution becomes weakly localized in the limit case of vanishing background loss. Numerical solutions, with the delta-function replaced by a finite-width approximation, demonstrate stability of the pinned solitons and their existence in the general case, when the analytical solution is not available. If the gain-localization region and the size of the soliton are comparable, the static soliton is replaced by a stable breather.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2009-01076-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article</subject><ispartof>The European physical journal. ST, Special topics, 2009-06, Vol.173 (1), p.233-243</ispartof><rights>EDP Sciences and Springer 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3</citedby><cites>FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lam, C.-K.</creatorcontrib><creatorcontrib>Malomed, B. A.</creatorcontrib><creatorcontrib>Chow, K. W.</creatorcontrib><creatorcontrib>Wai, P.K.A.</creatorcontrib><title>Spatial solitons supported by localized gain in nonlinear optical waveguides</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization accounted for by the delta-function, a solution for pinned solitons is found in an analytical form, with one relation imposed on parameters of the model. The exponentially localized solution becomes weakly localized in the limit case of vanishing background loss. Numerical solutions, with the delta-function replaced by a finite-width approximation, demonstrate stability of the pinned solitons and their existence in the general case, when the analytical solution is not available. If the gain-localization region and the size of the soliton are comparable, the static soliton is replaced by a stable breather.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKu_wMuevK1NNtns5ihFrVDwoJ5DNpmUlDRZk12l_nrXVq_CwMww7z2YD6Frgm8JYXgB_TYPC6gwFiUmuOFle4JmRNSk5AyT07-Z1vU5ush5i3HNK0FnaP3Sq8EpX-To3RBDLvLY9zENYIpuX_iolXdf07JRLhRThRi8C6BSEfvBTdfiU33AZnQG8iU6s8pnuPrtc_T2cP-6XJXr58en5d261FSQoYTGtFwZ09hKaN42uqN1I2yj27arGlYBpVQABmGtUbqmFivFKaPctMyA7egc3Rxz-xTfR8iD3LmswXsVII5ZUs4qQRibhPQo1CnmnMDKPrmdSntJsPwhJw_k5IGcPJCT7eRiR1ee1GEDSW7jmML00b-2b1JTdpU</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Lam, C.-K.</creator><creator>Malomed, B. A.</creator><creator>Chow, K. W.</creator><creator>Wai, P.K.A.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090601</creationdate><title>Spatial solitons supported by localized gain in nonlinear optical waveguides</title><author>Lam, C.-K. ; Malomed, B. A. ; Chow, K. W. ; Wai, P.K.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, C.-K.</creatorcontrib><creatorcontrib>Malomed, B. A.</creatorcontrib><creatorcontrib>Chow, K. W.</creatorcontrib><creatorcontrib>Wai, P.K.A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, C.-K.</au><au>Malomed, B. A.</au><au>Chow, K. W.</au><au>Wai, P.K.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial solitons supported by localized gain in nonlinear optical waveguides</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>173</volume><issue>1</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>We introduce a modification of the complex Ginzburg-Landau (CGL) equation with background linear loss and locally applied gain. The equation appertains to laser cavities based on planar waveguides, and also to the description of thermal convection in binary fluids. With the gain localization accounted for by the delta-function, a solution for pinned solitons is found in an analytical form, with one relation imposed on parameters of the model. The exponentially localized solution becomes weakly localized in the limit case of vanishing background loss. Numerical solutions, with the delta-function replaced by a finite-width approximation, demonstrate stability of the pinned solitons and their existence in the general case, when the analytical solution is not available. If the gain-localization region and the size of the soliton are comparable, the static soliton is replaced by a stable breather.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjst/e2009-01076-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2009-06, Vol.173 (1), p.233-243
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_miscellaneous_36429144
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Atomic
Classical and Continuum Physics
Condensed Matter Physics
Materials Science
Measurement Science and Instrumentation
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
title Spatial solitons supported by localized gain in nonlinear optical waveguides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20solitons%20supported%20by%20localized%20gain%20in%20nonlinear%20optical%20waveguides&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Lam,%20C.-K.&rft.date=2009-06-01&rft.volume=173&rft.issue=1&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2009-01076-8&rft_dat=%3Cproquest_cross%3E36429144%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-e7d86add7f29c687cb3579f7c88b2742e3339e0e9ffdac53f0aa63436d84defb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=36429144&rft_id=info:pmid/&rfr_iscdi=true