Loading…
Performance prediction of wet cooling tower using artificial neural network under cross-wind conditions
This paper describes an application of artificial neural networks (ANNs) to predict the thermal performance of a cooling tower under cross-wind conditions. A lab experiment on natural draft counter-flow wet cooling tower is conducted on one model tower in order to gather enough data for training and...
Saved in:
Published in: | International journal of thermal sciences 2009-03, Vol.48 (3), p.583-589 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes an application of artificial neural networks (ANNs) to predict the thermal performance of a cooling tower under cross-wind conditions. A lab experiment on natural draft counter-flow wet cooling tower is conducted on one model tower in order to gather enough data for training and prediction. The output parameters with high correlation are measured when the cross-wind velocity, circulating water flow rate and inlet water temperature are changed, respectively. The three-layer back propagation (BP) network model which has one hidden layer is developed, and the node number in the input layer, hidden layer and output layer are 5, 6 and 3, respectively. The model adopts the improved BP algorithm, that is, the gradient descent method with momentum. This ANN model demonstrated a good statistical performance with the correlation coefficient in the range of 0.993–0.999, and the mean square error (MSE) values for the ANN training and predictions were very low relative to the experimental range. So this ANN model can be used to predict the thermal performance of cooling tower under cross-wind conditions, then providing the theoretical basis on the research of heat and mass transfer inside cooling tower under cross-wind conditions. |
---|---|
ISSN: | 1290-0729 1778-4166 |
DOI: | 10.1016/j.ijthermalsci.2008.03.012 |