Loading…
Asymptotic properties of Monte Carlo estimators of diffusion processes
This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed o...
Saved in:
Published in: | Journal of econometrics 2006-09, Vol.134 (1), p.1-68 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3 |
container_end_page | 68 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of econometrics |
container_volume | 134 |
creator | Detemple, Jérôme Garcia, René Rindisbacher, Marcel |
description | This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes. |
doi_str_mv | 10.1016/j.jeconom.2005.06.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36476331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407605001375</els_id><sourcerecordid>36476331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3</originalsourceid><addsrcrecordid>eNqFUV2L1TAUDKLgdfUnCEXQt3aT5qPpkyyXXVfYxZd9D-npKaa0TU1yF-6_N91eFHwxcDKQzJwzmRDykdGKUaaux2pE8Iufq5pSWVFV0Vq_Igemm7pUupWvyYFyKkpBG_WWvItxpJkoND-Qu5t4ntfkk4NiDX7FkBzGwg_Fo18SFkcbJl9gTG62yYeXm94Nwyk6v2wKwBgxvidvBjtF_HDBK_J0d_t0vC8ffnz7frx5KEE2LJW9lNLaVusBe8oBsGksglRNS6ERTMleoxRdhzV2rYJad5xzpK1mIMTQ8SvyZW-bB_86ZVdmdhFwmuyC_hQNV6JRnLNM_PQPcfSnsGRrhrVKqZozlUlyJ0HwMQYczBryM8PZMGq2ZM1oLsmaLVlDlcnJZt39rgu4IvwRYV47-dlwy7jI-zlXlqoMbjvMtb6g0uZnmnOrzxefNoKdhmAXcPGvD52_SdBt5NedhzncZ4fBRHC4APYuICTTe_cf078BiH6qqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196662316</pqid></control><display><type>article</type><title>Asymptotic properties of Monte Carlo estimators of diffusion processes</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Detemple, Jérôme ; Garcia, René ; Rindisbacher, Marcel</creator><creatorcontrib>Detemple, Jérôme ; Garcia, René ; Rindisbacher, Marcel</creatorcontrib><description>This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2005.06.028</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Approximation ; Diffusion ; Diffusion processes ; Distribution theory ; Doss transformation ; Estimation ; Eulers equations ; Exact sciences and technology ; Insurance, economics, finance ; Mathematics ; Monte Carlo estimators ; Monte Carlo simulation ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Sciences and techniques of general use ; Simulation-based estimation ; Statistics ; Studies</subject><ispartof>Journal of econometrics, 2006-09, Vol.134 (1), p.1-68</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3</citedby><cites>FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407605001375$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18054408$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a134_3ay_3a2006_3ai_3a1_3ap_3a1-68.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Detemple, Jérôme</creatorcontrib><creatorcontrib>Garcia, René</creatorcontrib><creatorcontrib>Rindisbacher, Marcel</creatorcontrib><title>Asymptotic properties of Monte Carlo estimators of diffusion processes</title><title>Journal of econometrics</title><description>This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes.</description><subject>Applications</subject><subject>Approximation</subject><subject>Diffusion</subject><subject>Diffusion processes</subject><subject>Distribution theory</subject><subject>Doss transformation</subject><subject>Estimation</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Insurance, economics, finance</subject><subject>Mathematics</subject><subject>Monte Carlo estimators</subject><subject>Monte Carlo simulation</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Simulation-based estimation</subject><subject>Statistics</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUV2L1TAUDKLgdfUnCEXQt3aT5qPpkyyXXVfYxZd9D-npKaa0TU1yF-6_N91eFHwxcDKQzJwzmRDykdGKUaaux2pE8Iufq5pSWVFV0Vq_Igemm7pUupWvyYFyKkpBG_WWvItxpJkoND-Qu5t4ntfkk4NiDX7FkBzGwg_Fo18SFkcbJl9gTG62yYeXm94Nwyk6v2wKwBgxvidvBjtF_HDBK_J0d_t0vC8ffnz7frx5KEE2LJW9lNLaVusBe8oBsGksglRNS6ERTMleoxRdhzV2rYJad5xzpK1mIMTQ8SvyZW-bB_86ZVdmdhFwmuyC_hQNV6JRnLNM_PQPcfSnsGRrhrVKqZozlUlyJ0HwMQYczBryM8PZMGq2ZM1oLsmaLVlDlcnJZt39rgu4IvwRYV47-dlwy7jI-zlXlqoMbjvMtb6g0uZnmnOrzxefNoKdhmAXcPGvD52_SdBt5NedhzncZ4fBRHC4APYuICTTe_cf078BiH6qqw</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Detemple, Jérôme</creator><creator>Garcia, René</creator><creator>Rindisbacher, Marcel</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20060901</creationdate><title>Asymptotic properties of Monte Carlo estimators of diffusion processes</title><author>Detemple, Jérôme ; Garcia, René ; Rindisbacher, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Diffusion</topic><topic>Diffusion processes</topic><topic>Distribution theory</topic><topic>Doss transformation</topic><topic>Estimation</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Insurance, economics, finance</topic><topic>Mathematics</topic><topic>Monte Carlo estimators</topic><topic>Monte Carlo simulation</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Simulation-based estimation</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Detemple, Jérôme</creatorcontrib><creatorcontrib>Garcia, René</creatorcontrib><creatorcontrib>Rindisbacher, Marcel</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Detemple, Jérôme</au><au>Garcia, René</au><au>Rindisbacher, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic properties of Monte Carlo estimators of diffusion processes</atitle><jtitle>Journal of econometrics</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>134</volume><issue>1</issue><spage>1</spage><epage>68</epage><pages>1-68</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2005.06.028</doi><tpages>68</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2006-09, Vol.134 (1), p.1-68 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_miscellaneous_36476331 |
source | International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Applications Approximation Diffusion Diffusion processes Distribution theory Doss transformation Estimation Eulers equations Exact sciences and technology Insurance, economics, finance Mathematics Monte Carlo estimators Monte Carlo simulation Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Probability and statistics Sciences and techniques of general use Simulation-based estimation Statistics Studies |
title | Asymptotic properties of Monte Carlo estimators of diffusion processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20properties%20of%20Monte%20Carlo%20estimators%20of%20diffusion%20processes&rft.jtitle=Journal%20of%20econometrics&rft.au=Detemple,%20J%C3%A9r%C3%B4me&rft.date=2006-09-01&rft.volume=134&rft.issue=1&rft.spage=1&rft.epage=68&rft.pages=1-68&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2005.06.028&rft_dat=%3Cproquest_cross%3E36476331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196662316&rft_id=info:pmid/&rfr_iscdi=true |