Loading…

Asymptotic properties of Monte Carlo estimators of diffusion processes

This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2006-09, Vol.134 (1), p.1-68
Main Authors: Detemple, Jérôme, Garcia, René, Rindisbacher, Marcel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3
cites cdi_FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3
container_end_page 68
container_issue 1
container_start_page 1
container_title Journal of econometrics
container_volume 134
creator Detemple, Jérôme
Garcia, René
Rindisbacher, Marcel
description This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes.
doi_str_mv 10.1016/j.jeconom.2005.06.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36476331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407605001375</els_id><sourcerecordid>36476331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3</originalsourceid><addsrcrecordid>eNqFUV2L1TAUDKLgdfUnCEXQt3aT5qPpkyyXXVfYxZd9D-npKaa0TU1yF-6_N91eFHwxcDKQzJwzmRDykdGKUaaux2pE8Iufq5pSWVFV0Vq_Igemm7pUupWvyYFyKkpBG_WWvItxpJkoND-Qu5t4ntfkk4NiDX7FkBzGwg_Fo18SFkcbJl9gTG62yYeXm94Nwyk6v2wKwBgxvidvBjtF_HDBK_J0d_t0vC8ffnz7frx5KEE2LJW9lNLaVusBe8oBsGksglRNS6ERTMleoxRdhzV2rYJad5xzpK1mIMTQ8SvyZW-bB_86ZVdmdhFwmuyC_hQNV6JRnLNM_PQPcfSnsGRrhrVKqZozlUlyJ0HwMQYczBryM8PZMGq2ZM1oLsmaLVlDlcnJZt39rgu4IvwRYV47-dlwy7jI-zlXlqoMbjvMtb6g0uZnmnOrzxefNoKdhmAXcPGvD52_SdBt5NedhzncZ4fBRHC4APYuICTTe_cf078BiH6qqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196662316</pqid></control><display><type>article</type><title>Asymptotic properties of Monte Carlo estimators of diffusion processes</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Detemple, Jérôme ; Garcia, René ; Rindisbacher, Marcel</creator><creatorcontrib>Detemple, Jérôme ; Garcia, René ; Rindisbacher, Marcel</creatorcontrib><description>This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2005.06.028</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Approximation ; Diffusion ; Diffusion processes ; Distribution theory ; Doss transformation ; Estimation ; Eulers equations ; Exact sciences and technology ; Insurance, economics, finance ; Mathematics ; Monte Carlo estimators ; Monte Carlo simulation ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Sciences and techniques of general use ; Simulation-based estimation ; Statistics ; Studies</subject><ispartof>Journal of econometrics, 2006-09, Vol.134 (1), p.1-68</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3</citedby><cites>FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407605001375$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18054408$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a134_3ay_3a2006_3ai_3a1_3ap_3a1-68.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Detemple, Jérôme</creatorcontrib><creatorcontrib>Garcia, René</creatorcontrib><creatorcontrib>Rindisbacher, Marcel</creatorcontrib><title>Asymptotic properties of Monte Carlo estimators of diffusion processes</title><title>Journal of econometrics</title><description>This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes.</description><subject>Applications</subject><subject>Approximation</subject><subject>Diffusion</subject><subject>Diffusion processes</subject><subject>Distribution theory</subject><subject>Doss transformation</subject><subject>Estimation</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Insurance, economics, finance</subject><subject>Mathematics</subject><subject>Monte Carlo estimators</subject><subject>Monte Carlo simulation</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Simulation-based estimation</subject><subject>Statistics</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUV2L1TAUDKLgdfUnCEXQt3aT5qPpkyyXXVfYxZd9D-npKaa0TU1yF-6_N91eFHwxcDKQzJwzmRDykdGKUaaux2pE8Iufq5pSWVFV0Vq_Igemm7pUupWvyYFyKkpBG_WWvItxpJkoND-Qu5t4ntfkk4NiDX7FkBzGwg_Fo18SFkcbJl9gTG62yYeXm94Nwyk6v2wKwBgxvidvBjtF_HDBK_J0d_t0vC8ffnz7frx5KEE2LJW9lNLaVusBe8oBsGksglRNS6ERTMleoxRdhzV2rYJad5xzpK1mIMTQ8SvyZW-bB_86ZVdmdhFwmuyC_hQNV6JRnLNM_PQPcfSnsGRrhrVKqZozlUlyJ0HwMQYczBryM8PZMGq2ZM1oLsmaLVlDlcnJZt39rgu4IvwRYV47-dlwy7jI-zlXlqoMbjvMtb6g0uZnmnOrzxefNoKdhmAXcPGvD52_SdBt5NedhzncZ4fBRHC4APYuICTTe_cf078BiH6qqw</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Detemple, Jérôme</creator><creator>Garcia, René</creator><creator>Rindisbacher, Marcel</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20060901</creationdate><title>Asymptotic properties of Monte Carlo estimators of diffusion processes</title><author>Detemple, Jérôme ; Garcia, René ; Rindisbacher, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Diffusion</topic><topic>Diffusion processes</topic><topic>Distribution theory</topic><topic>Doss transformation</topic><topic>Estimation</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Insurance, economics, finance</topic><topic>Mathematics</topic><topic>Monte Carlo estimators</topic><topic>Monte Carlo simulation</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Simulation-based estimation</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Detemple, Jérôme</creatorcontrib><creatorcontrib>Garcia, René</creatorcontrib><creatorcontrib>Rindisbacher, Marcel</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Detemple, Jérôme</au><au>Garcia, René</au><au>Rindisbacher, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic properties of Monte Carlo estimators of diffusion processes</atitle><jtitle>Journal of econometrics</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>134</volume><issue>1</issue><spage>1</spage><epage>68</epage><pages>1-68</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2005.06.028</doi><tpages>68</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2006-09, Vol.134 (1), p.1-68
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_36476331
source International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Applications
Approximation
Diffusion
Diffusion processes
Distribution theory
Doss transformation
Estimation
Eulers equations
Exact sciences and technology
Insurance, economics, finance
Mathematics
Monte Carlo estimators
Monte Carlo simulation
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Sciences and techniques of general use
Simulation-based estimation
Statistics
Studies
title Asymptotic properties of Monte Carlo estimators of diffusion processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20properties%20of%20Monte%20Carlo%20estimators%20of%20diffusion%20processes&rft.jtitle=Journal%20of%20econometrics&rft.au=Detemple,%20J%C3%A9r%C3%B4me&rft.date=2006-09-01&rft.volume=134&rft.issue=1&rft.spage=1&rft.epage=68&rft.pages=1-68&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2005.06.028&rft_dat=%3Cproquest_cross%3E36476331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c571t-d555aa988fed03cce77aec56790c74165d8e54bbe2eb96c28b333e0981c44fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196662316&rft_id=info:pmid/&rfr_iscdi=true