Loading…

Singularity bifurcations

Euler equation models represent an important class of macroeconomic systems. Our ongoing research [He, Y., Barnett, W.A., 2003. New phenomena identified in a stochastic dynamic macroeconometric model: A bifurcation perspective. Working Paper, University of Kansas] on the Leeper and Sims [Leeper, E.,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of macroeconomics 2006-03, Vol.28 (1), p.5-22
Main Authors: He, Yijun, Barnett, William A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-6da28b9b598df99d96c3a657e3ba516d144f83936f4fca7222ac15abf34244403
cites cdi_FETCH-LOGICAL-c536t-6da28b9b598df99d96c3a657e3ba516d144f83936f4fca7222ac15abf34244403
container_end_page 22
container_issue 1
container_start_page 5
container_title Journal of macroeconomics
container_volume 28
creator He, Yijun
Barnett, William A.
description Euler equation models represent an important class of macroeconomic systems. Our ongoing research [He, Y., Barnett, W.A., 2003. New phenomena identified in a stochastic dynamic macroeconometric model: A bifurcation perspective. Working Paper, University of Kansas] on the Leeper and Sims [Leeper, E., Sims, C., 1994. Toward a modern macro model usable for policy analysis. NBER Macroeconomics Annual, National Bureau of Economic Research, New York, pp. 81–117] Euler equations macroeconometric model is revealing the existence of singularity-induced bifurcations, when the model’s parameters are within a confidence region about the parameter estimates. Although known to engineers, singularity bifurcation has not previously been seen in the economics literature. Knowledge of the nature of singularity-induced bifurcations is likely to become important in understanding the dynamics of modern macroeconometric models. This paper explains singularity-induced bifurcation, its nature, and its identification and contrasts this class of bifurcations with the more common forms of bifurcation we have previously encountered within the parameter space of the Bergstrom and Wymer [Bergstrom, A.R., Wymer, C.R., 1976. A model of disequilibrium neoclassic growth and its application to the United Kingdom. In: Bergstrom, A.R. (Ed.), Statistical Inference in Continuous Time Economic Models, North-Holland, Amsterdam, pp. 267–327] continuous time macroeconometric model of the UK economy (see, e.g., [Barnett, W.A., He, Y., 1999. Stability analysis of continuous-time, macroeconometric systems. Studies in Nonlinear Dynamics and Econometrics 3, 169–188; Barnett, W.A., He, Y., 2002. Stabilization policy as bifurcation selection: Would stabilization policy work if the economy really were unstable? Macroeconomic Dynamics 6, 713–747]).
doi_str_mv 10.1016/j.jmacro.2005.10.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36476524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0164070405000704</els_id><sourcerecordid>36476524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-6da28b9b598df99d96c3a657e3ba516d144f83936f4fca7222ac15abf34244403</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLgunr34EE8eGvNd5uLIIuuwoIHFbyFNE01Zfth0i7sv_eVigcPHibv8ZgZJoPQBcEpwUTe1GndGBu6lGIs4JRiTA7QguQZS4ig74doATSe4AzzY3QSY40xzqXgC3T-4tuPcWuCH_aXha_GYM3guzaeoqPKbKM7-5lL9PZw_7p6TDbP66fV3SaxgskhkaWheaEKofKyUqpU0jIjReZYYQSRJeG8yplisuKVNRml1FgiTFExTjnnmC3R9ezbh-5rdHHQjY_Wbbemdd0YNZM8k4JyIF79IdbdGFrIpilVkotMTW58JkEbMQZX6T74xoS9JlhPXelaz13pqavpCl2BbD3Lguud_dU4537IO83gn_DspwVjCcMDCKAHCMigP4cGnG5nJwed7bwLOlrvWutKH5wddNn5_6N8A6vMipQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229645790</pqid></control><display><type>article</type><title>Singularity bifurcations</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>He, Yijun ; Barnett, William A.</creator><creatorcontrib>He, Yijun ; Barnett, William A.</creatorcontrib><description>Euler equation models represent an important class of macroeconomic systems. Our ongoing research [He, Y., Barnett, W.A., 2003. New phenomena identified in a stochastic dynamic macroeconometric model: A bifurcation perspective. Working Paper, University of Kansas] on the Leeper and Sims [Leeper, E., Sims, C., 1994. Toward a modern macro model usable for policy analysis. NBER Macroeconomics Annual, National Bureau of Economic Research, New York, pp. 81–117] Euler equations macroeconometric model is revealing the existence of singularity-induced bifurcations, when the model’s parameters are within a confidence region about the parameter estimates. Although known to engineers, singularity bifurcation has not previously been seen in the economics literature. Knowledge of the nature of singularity-induced bifurcations is likely to become important in understanding the dynamics of modern macroeconometric models. This paper explains singularity-induced bifurcation, its nature, and its identification and contrasts this class of bifurcations with the more common forms of bifurcation we have previously encountered within the parameter space of the Bergstrom and Wymer [Bergstrom, A.R., Wymer, C.R., 1976. A model of disequilibrium neoclassic growth and its application to the United Kingdom. In: Bergstrom, A.R. (Ed.), Statistical Inference in Continuous Time Economic Models, North-Holland, Amsterdam, pp. 267–327] continuous time macroeconometric model of the UK economy (see, e.g., [Barnett, W.A., He, Y., 1999. Stability analysis of continuous-time, macroeconometric systems. Studies in Nonlinear Dynamics and Econometrics 3, 169–188; Barnett, W.A., He, Y., 2002. Stabilization policy as bifurcation selection: Would stabilization policy work if the economy really were unstable? Macroeconomic Dynamics 6, 713–747]).</description><identifier>ISSN: 0164-0704</identifier><identifier>EISSN: 1873-152X</identifier><identifier>DOI: 10.1016/j.jmacro.2005.10.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Bifurcation ; Dynamic models ; Dynamics ; Economic dynamics ; Economic theory ; Macroeconometrics ; Macroeconomics ; Mathematical economics ; Non-linear models ; Nonlinearity ; Singularity ; Stochastic models ; Studies</subject><ispartof>Journal of macroeconomics, 2006-03, Vol.28 (1), p.5-22</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Mar 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-6da28b9b598df99d96c3a657e3ba516d144f83936f4fca7222ac15abf34244403</citedby><cites>FETCH-LOGICAL-c536t-6da28b9b598df99d96c3a657e3ba516d144f83936f4fca7222ac15abf34244403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejmacro/v_3a28_3ay_3a2006_3ai_3a1_3ap_3a5-22.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yijun</creatorcontrib><creatorcontrib>Barnett, William A.</creatorcontrib><title>Singularity bifurcations</title><title>Journal of macroeconomics</title><description>Euler equation models represent an important class of macroeconomic systems. Our ongoing research [He, Y., Barnett, W.A., 2003. New phenomena identified in a stochastic dynamic macroeconometric model: A bifurcation perspective. Working Paper, University of Kansas] on the Leeper and Sims [Leeper, E., Sims, C., 1994. Toward a modern macro model usable for policy analysis. NBER Macroeconomics Annual, National Bureau of Economic Research, New York, pp. 81–117] Euler equations macroeconometric model is revealing the existence of singularity-induced bifurcations, when the model’s parameters are within a confidence region about the parameter estimates. Although known to engineers, singularity bifurcation has not previously been seen in the economics literature. Knowledge of the nature of singularity-induced bifurcations is likely to become important in understanding the dynamics of modern macroeconometric models. This paper explains singularity-induced bifurcation, its nature, and its identification and contrasts this class of bifurcations with the more common forms of bifurcation we have previously encountered within the parameter space of the Bergstrom and Wymer [Bergstrom, A.R., Wymer, C.R., 1976. A model of disequilibrium neoclassic growth and its application to the United Kingdom. In: Bergstrom, A.R. (Ed.), Statistical Inference in Continuous Time Economic Models, North-Holland, Amsterdam, pp. 267–327] continuous time macroeconometric model of the UK economy (see, e.g., [Barnett, W.A., He, Y., 1999. Stability analysis of continuous-time, macroeconometric systems. Studies in Nonlinear Dynamics and Econometrics 3, 169–188; Barnett, W.A., He, Y., 2002. Stabilization policy as bifurcation selection: Would stabilization policy work if the economy really were unstable? Macroeconomic Dynamics 6, 713–747]).</description><subject>Bifurcation</subject><subject>Dynamic models</subject><subject>Dynamics</subject><subject>Economic dynamics</subject><subject>Economic theory</subject><subject>Macroeconometrics</subject><subject>Macroeconomics</subject><subject>Mathematical economics</subject><subject>Non-linear models</subject><subject>Nonlinearity</subject><subject>Singularity</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0164-0704</issn><issn>1873-152X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9UE1LxDAUDKLgunr34EE8eGvNd5uLIIuuwoIHFbyFNE01Zfth0i7sv_eVigcPHibv8ZgZJoPQBcEpwUTe1GndGBu6lGIs4JRiTA7QguQZS4ig74doATSe4AzzY3QSY40xzqXgC3T-4tuPcWuCH_aXha_GYM3guzaeoqPKbKM7-5lL9PZw_7p6TDbP66fV3SaxgskhkaWheaEKofKyUqpU0jIjReZYYQSRJeG8yplisuKVNRml1FgiTFExTjnnmC3R9ezbh-5rdHHQjY_Wbbemdd0YNZM8k4JyIF79IdbdGFrIpilVkotMTW58JkEbMQZX6T74xoS9JlhPXelaz13pqavpCl2BbD3Lguud_dU4537IO83gn_DspwVjCcMDCKAHCMigP4cGnG5nJwed7bwLOlrvWutKH5wddNn5_6N8A6vMipQ</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>He, Yijun</creator><creator>Barnett, William A.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20060301</creationdate><title>Singularity bifurcations</title><author>He, Yijun ; Barnett, William A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-6da28b9b598df99d96c3a657e3ba516d144f83936f4fca7222ac15abf34244403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bifurcation</topic><topic>Dynamic models</topic><topic>Dynamics</topic><topic>Economic dynamics</topic><topic>Economic theory</topic><topic>Macroeconometrics</topic><topic>Macroeconomics</topic><topic>Mathematical economics</topic><topic>Non-linear models</topic><topic>Nonlinearity</topic><topic>Singularity</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yijun</creatorcontrib><creatorcontrib>Barnett, William A.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of macroeconomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yijun</au><au>Barnett, William A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularity bifurcations</atitle><jtitle>Journal of macroeconomics</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>28</volume><issue>1</issue><spage>5</spage><epage>22</epage><pages>5-22</pages><issn>0164-0704</issn><eissn>1873-152X</eissn><abstract>Euler equation models represent an important class of macroeconomic systems. Our ongoing research [He, Y., Barnett, W.A., 2003. New phenomena identified in a stochastic dynamic macroeconometric model: A bifurcation perspective. Working Paper, University of Kansas] on the Leeper and Sims [Leeper, E., Sims, C., 1994. Toward a modern macro model usable for policy analysis. NBER Macroeconomics Annual, National Bureau of Economic Research, New York, pp. 81–117] Euler equations macroeconometric model is revealing the existence of singularity-induced bifurcations, when the model’s parameters are within a confidence region about the parameter estimates. Although known to engineers, singularity bifurcation has not previously been seen in the economics literature. Knowledge of the nature of singularity-induced bifurcations is likely to become important in understanding the dynamics of modern macroeconometric models. This paper explains singularity-induced bifurcation, its nature, and its identification and contrasts this class of bifurcations with the more common forms of bifurcation we have previously encountered within the parameter space of the Bergstrom and Wymer [Bergstrom, A.R., Wymer, C.R., 1976. A model of disequilibrium neoclassic growth and its application to the United Kingdom. In: Bergstrom, A.R. (Ed.), Statistical Inference in Continuous Time Economic Models, North-Holland, Amsterdam, pp. 267–327] continuous time macroeconometric model of the UK economy (see, e.g., [Barnett, W.A., He, Y., 1999. Stability analysis of continuous-time, macroeconometric systems. Studies in Nonlinear Dynamics and Econometrics 3, 169–188; Barnett, W.A., He, Y., 2002. Stabilization policy as bifurcation selection: Would stabilization policy work if the economy really were unstable? Macroeconomic Dynamics 6, 713–747]).</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmacro.2005.10.001</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0164-0704
ispartof Journal of macroeconomics, 2006-03, Vol.28 (1), p.5-22
issn 0164-0704
1873-152X
language eng
recordid cdi_proquest_miscellaneous_36476524
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection 2022-2024
subjects Bifurcation
Dynamic models
Dynamics
Economic dynamics
Economic theory
Macroeconometrics
Macroeconomics
Mathematical economics
Non-linear models
Nonlinearity
Singularity
Stochastic models
Studies
title Singularity bifurcations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularity%20bifurcations&rft.jtitle=Journal%20of%20macroeconomics&rft.au=He,%20Yijun&rft.date=2006-03-01&rft.volume=28&rft.issue=1&rft.spage=5&rft.epage=22&rft.pages=5-22&rft.issn=0164-0704&rft.eissn=1873-152X&rft_id=info:doi/10.1016/j.jmacro.2005.10.001&rft_dat=%3Cproquest_cross%3E36476524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-6da28b9b598df99d96c3a657e3ba516d144f83936f4fca7222ac15abf34244403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=229645790&rft_id=info:pmid/&rfr_iscdi=true