Loading…
Effective securities in arbitrage-free markets with bid–ask spreads at liquidation: a linear programming characterization
We consider a securities market with bid–ask spreads at any period, including liquidation. Although the minimum-cost super-replication problem is non-linear, we introduce an auxiliary problem that allows us to characterize no-arbitrage via linear programming techniques. We introduce the notion of ef...
Saved in:
Published in: | Journal of economic dynamics & control 2006, Vol.30 (1), p.55-79 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-26e3758fc851b7275c92c26684da8baf46738d79753e7cec0c281a0a795f71893 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-26e3758fc851b7275c92c26684da8baf46738d79753e7cec0c281a0a795f71893 |
container_end_page | 79 |
container_issue | 1 |
container_start_page | 55 |
container_title | Journal of economic dynamics & control |
container_volume | 30 |
creator | Baccara, Mariagiovanna Battauz, Anna Ortu, Fulvio |
description | We consider a securities market with bid–ask spreads at any period, including liquidation. Although the minimum-cost super-replication problem is non-linear, we introduce an auxiliary problem that allows us to characterize no-arbitrage via linear programming techniques. We introduce the notion of effective new security and show that effectiveness restricts the no-arbitrage bid and ask prices of a new security to the interval defined by the minimum-cost problem. We discuss in detail the cases in which the boundaries of this interval can be reached without violating no-arbitrage. |
doi_str_mv | 10.1016/j.jedc.2004.11.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36485317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016518890400137X</els_id><sourcerecordid>942697041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-26e3758fc851b7275c92c26684da8baf46738d79753e7cec0c281a0a795f71893</originalsourceid><addsrcrecordid>eNp9UcuO1DAQjBBIDAs_wMniwC3BjuNHEBe0WnaRVuICZ6vH6cw4O0lmbWfQwGX_gT_kS-hhEAcOHMotS1XVpa6ieCl4JbjQb4ZqwM5XNedNJUTFuXxUrIQ1bSlMIx8XKyKpUljbPi2epTRwzlWtxKr4ftX36HM4IEvolxhywMTCxCCuQ46wwbKPiGyEeIc5sa8hb9k6dD8ffkC6Y2kfEbrEILNduF9CBznM01sG9J0QItvHeRNhHMO0YX4LEXzGGL79pj0vnvSwS_jiz7wovny4-nx5U95-uv54-f629I1Vuaw1SqNs760Sa1Mb5dva11rbpgO7hr7RRtrOtEZJNB4997UVwMG0qjfCtvKieH32pTD3C6bsxpA87nYw4bwkJzXtkcIQ8dU_xGFe4kTZnGi11o1oFJHqM8nHOaWIvdvHQOc5OsHdqQw3uFMZ7lSGE8JRGSS6OYsi7tH_VSBid5z8PLmDkyA5PUcCKTWNQBCEPUEpZ1q3zSNZvTtbIZ3sEDC65ANOHrsQqUnXzeF_SX4Bcy6t8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196664145</pqid></control><display><type>article</type><title>Effective securities in arbitrage-free markets with bid–ask spreads at liquidation: a linear programming characterization</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><creator>Baccara, Mariagiovanna ; Battauz, Anna ; Ortu, Fulvio</creator><creatorcontrib>Baccara, Mariagiovanna ; Battauz, Anna ; Ortu, Fulvio</creatorcontrib><description>We consider a securities market with bid–ask spreads at any period, including liquidation. Although the minimum-cost super-replication problem is non-linear, we introduce an auxiliary problem that allows us to characterize no-arbitrage via linear programming techniques. We introduce the notion of effective new security and show that effectiveness restricts the no-arbitrage bid and ask prices of a new security to the interval defined by the minimum-cost problem. We discuss in detail the cases in which the boundaries of this interval can be reached without violating no-arbitrage.</description><identifier>ISSN: 0165-1889</identifier><identifier>EISSN: 1879-1743</identifier><identifier>DOI: 10.1016/j.jedc.2004.11.003</identifier><identifier>CODEN: JEDCDH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Arbitrage ; Asked price ; Asset valuation ; Bid–ask prices ; Effective securities ; Financial economics ; Financial models ; Linear programming ; Liquidity ; Mathematical methods ; Securities markets ; Studies</subject><ispartof>Journal of economic dynamics & control, 2006, Vol.30 (1), p.55-79</ispartof><rights>2005 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-26e3758fc851b7275c92c26684da8baf46738d79753e7cec0c281a0a795f71893</citedby><cites>FETCH-LOGICAL-c485t-26e3758fc851b7275c92c26684da8baf46738d79753e7cec0c281a0a795f71893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904,33202,33203</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeedyncon/v_3a30_3ay_3a2006_3ai_3a1_3ap_3a55-79.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Baccara, Mariagiovanna</creatorcontrib><creatorcontrib>Battauz, Anna</creatorcontrib><creatorcontrib>Ortu, Fulvio</creatorcontrib><title>Effective securities in arbitrage-free markets with bid–ask spreads at liquidation: a linear programming characterization</title><title>Journal of economic dynamics & control</title><description>We consider a securities market with bid–ask spreads at any period, including liquidation. Although the minimum-cost super-replication problem is non-linear, we introduce an auxiliary problem that allows us to characterize no-arbitrage via linear programming techniques. We introduce the notion of effective new security and show that effectiveness restricts the no-arbitrage bid and ask prices of a new security to the interval defined by the minimum-cost problem. We discuss in detail the cases in which the boundaries of this interval can be reached without violating no-arbitrage.</description><subject>Arbitrage</subject><subject>Asked price</subject><subject>Asset valuation</subject><subject>Bid–ask prices</subject><subject>Effective securities</subject><subject>Financial economics</subject><subject>Financial models</subject><subject>Linear programming</subject><subject>Liquidity</subject><subject>Mathematical methods</subject><subject>Securities markets</subject><subject>Studies</subject><issn>0165-1889</issn><issn>1879-1743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9UcuO1DAQjBBIDAs_wMniwC3BjuNHEBe0WnaRVuICZ6vH6cw4O0lmbWfQwGX_gT_kS-hhEAcOHMotS1XVpa6ieCl4JbjQb4ZqwM5XNedNJUTFuXxUrIQ1bSlMIx8XKyKpUljbPi2epTRwzlWtxKr4ftX36HM4IEvolxhywMTCxCCuQ46wwbKPiGyEeIc5sa8hb9k6dD8ffkC6Y2kfEbrEILNduF9CBznM01sG9J0QItvHeRNhHMO0YX4LEXzGGL79pj0vnvSwS_jiz7wovny4-nx5U95-uv54-f629I1Vuaw1SqNs760Sa1Mb5dva11rbpgO7hr7RRtrOtEZJNB4997UVwMG0qjfCtvKieH32pTD3C6bsxpA87nYw4bwkJzXtkcIQ8dU_xGFe4kTZnGi11o1oFJHqM8nHOaWIvdvHQOc5OsHdqQw3uFMZ7lSGE8JRGSS6OYsi7tH_VSBid5z8PLmDkyA5PUcCKTWNQBCEPUEpZ1q3zSNZvTtbIZ3sEDC65ANOHrsQqUnXzeF_SX4Bcy6t8A</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Baccara, Mariagiovanna</creator><creator>Battauz, Anna</creator><creator>Ortu, Fulvio</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2006</creationdate><title>Effective securities in arbitrage-free markets with bid–ask spreads at liquidation: a linear programming characterization</title><author>Baccara, Mariagiovanna ; Battauz, Anna ; Ortu, Fulvio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-26e3758fc851b7275c92c26684da8baf46738d79753e7cec0c281a0a795f71893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Arbitrage</topic><topic>Asked price</topic><topic>Asset valuation</topic><topic>Bid–ask prices</topic><topic>Effective securities</topic><topic>Financial economics</topic><topic>Financial models</topic><topic>Linear programming</topic><topic>Liquidity</topic><topic>Mathematical methods</topic><topic>Securities markets</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baccara, Mariagiovanna</creatorcontrib><creatorcontrib>Battauz, Anna</creatorcontrib><creatorcontrib>Ortu, Fulvio</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of economic dynamics & control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccara, Mariagiovanna</au><au>Battauz, Anna</au><au>Ortu, Fulvio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective securities in arbitrage-free markets with bid–ask spreads at liquidation: a linear programming characterization</atitle><jtitle>Journal of economic dynamics & control</jtitle><date>2006</date><risdate>2006</risdate><volume>30</volume><issue>1</issue><spage>55</spage><epage>79</epage><pages>55-79</pages><issn>0165-1889</issn><eissn>1879-1743</eissn><coden>JEDCDH</coden><abstract>We consider a securities market with bid–ask spreads at any period, including liquidation. Although the minimum-cost super-replication problem is non-linear, we introduce an auxiliary problem that allows us to characterize no-arbitrage via linear programming techniques. We introduce the notion of effective new security and show that effectiveness restricts the no-arbitrage bid and ask prices of a new security to the interval defined by the minimum-cost problem. We discuss in detail the cases in which the boundaries of this interval can be reached without violating no-arbitrage.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jedc.2004.11.003</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1889 |
ispartof | Journal of economic dynamics & control, 2006, Vol.30 (1), p.55-79 |
issn | 0165-1889 1879-1743 |
language | eng |
recordid | cdi_proquest_miscellaneous_36485317 |
source | International Bibliography of the Social Sciences (IBSS); Elsevier |
subjects | Arbitrage Asked price Asset valuation Bid–ask prices Effective securities Financial economics Financial models Linear programming Liquidity Mathematical methods Securities markets Studies |
title | Effective securities in arbitrage-free markets with bid–ask spreads at liquidation: a linear programming characterization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20securities%20in%20arbitrage-free%20markets%20with%20bid%E2%80%93ask%20spreads%20at%20liquidation:%20a%20linear%20programming%20characterization&rft.jtitle=Journal%20of%20economic%20dynamics%20&%20control&rft.au=Baccara,%20Mariagiovanna&rft.date=2006&rft.volume=30&rft.issue=1&rft.spage=55&rft.epage=79&rft.pages=55-79&rft.issn=0165-1889&rft.eissn=1879-1743&rft.coden=JEDCDH&rft_id=info:doi/10.1016/j.jedc.2004.11.003&rft_dat=%3Cproquest_cross%3E942697041%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-26e3758fc851b7275c92c26684da8baf46738d79753e7cec0c281a0a795f71893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196664145&rft_id=info:pmid/&rfr_iscdi=true |