Loading…

An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites

An analysis of the discharge mechanism in electrochemical discharge machining (ECDM) of a particulate reinforced metal matrix composite was undertaken, and a model to reveal the electric field acting on a hydrogen bubble in ECDM process has been established. The model was found capable of predicting...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine tools & manufacture 2010, Vol.50 (1), p.86-96
Main Authors: Liu, J.W., Yue, T.M., Guo, Z.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An analysis of the discharge mechanism in electrochemical discharge machining (ECDM) of a particulate reinforced metal matrix composite was undertaken, and a model to reveal the electric field acting on a hydrogen bubble in ECDM process has been established. The model was found capable of predicting the position of the maximum field strength on the bubble surface as well as the critical breakdown voltage for spark initiation, for a given processing condition. A set of experiments was performed to verify the model and the experimental results agreed well with the predicted values. The experimental results also showed that an increase in current, duty cycle, pulse duration or electrolyte concentration would promote the occurrence of arcing action in ECDM. Moreover, by studying the waveform of ECDM and surface craters, it is confirmed that the spark action is in the form of an arc. Compared to EDM, the volume of an arc eroded crater of ECDM was less than that of EDM. An XRD analysis of the phases of the EDM and ECDM specimens showed that the Al 4C 3 phase was detected on the former but not on the latter.
ISSN:0890-6955
1879-2170
DOI:10.1016/j.ijmachtools.2009.09.004