Loading…
Estimation and inference in two-stage, semi-parametric models of production processes
Many papers have regressed non-parametric estimates of productive efficiency on environmental variables in two-stage procedures to account for exogenous factors that might affect firms’ performance. None of these have described a coherent data-generating process (DGP). Moreover, conventional approac...
Saved in:
Published in: | Journal of econometrics 2007, Vol.136 (1), p.31-64 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many papers have regressed non-parametric estimates of productive efficiency on environmental variables in two-stage procedures to account for exogenous factors that might affect firms’ performance. None of these have described a coherent data-generating process (DGP). Moreover, conventional approaches to inference employed in these papers are invalid due to complicated, unknown serial correlation among the estimated efficiencies. We first describe a sensible DGP for such models. We propose single and double bootstrap procedures; both permit valid inference, and the double bootstrap procedure improves statistical efficiency in the second-stage regression. We examine the statistical performance of our estimators using Monte Carlo experiments. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/j.jeconom.2005.07.009 |