Loading…
Unmixing method for hyperspectral data based on sub-space method with learning process
An unmixing method for hyperspectral Earth observation satellite imagery data is proposed. It is based on a sub-space method with learning process. The proposed method utilizes a sub-space for feature space during unmixing. It is used to be done in a feature space which consists of spectral bands of...
Saved in:
Published in: | Advances in space research 2009-08, Vol.44 (4), p.517-523 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An unmixing method for hyperspectral Earth observation satellite imagery data is proposed. It is based on a sub-space method with learning process. The proposed method utilizes a sub-space for feature space during unmixing. It is used to be done in a feature space which consists of spectral bands of observation vectors. As the results from the experiments with airborne based hyperspectral imagery data, AVIRIS, it is found that the proposed unmixing is superior to the other existing method in terms of decomposition accuracy and the process time required for the decompositions. |
---|---|
ISSN: | 0273-1177 1879-1948 |
DOI: | 10.1016/j.asr.2009.04.034 |