Loading…

Distribution-free option pricing

Nobody doubts the power of the Black and Scholes option pricing method, yet there are situations in which the hypothesis of a lognormal model is too restrictive. A natural way to deal with this problem consists of weakening the hypothesis, by fixing only successive moments and possibly the mode of t...

Full description

Saved in:
Bibliographic Details
Published in:Insurance, mathematics & economics mathematics & economics, 2007-03, Vol.40 (2), p.179-199
Main Authors: Schepper, Ann De, Heijnen, Bart
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-7900244f3af4eeec71426afa40aab5e8ebc8f8e1d5e963367872d74b613798d23
cites cdi_FETCH-LOGICAL-c536t-7900244f3af4eeec71426afa40aab5e8ebc8f8e1d5e963367872d74b613798d23
container_end_page 199
container_issue 2
container_start_page 179
container_title Insurance, mathematics & economics
container_volume 40
creator Schepper, Ann De
Heijnen, Bart
description Nobody doubts the power of the Black and Scholes option pricing method, yet there are situations in which the hypothesis of a lognormal model is too restrictive. A natural way to deal with this problem consists of weakening the hypothesis, by fixing only successive moments and possibly the mode of the price process of a risky asset, and not the complete distribution. As a consequence of this generalization, the option price is no longer a unique value, but rather a range of possible values. In the present paper, we show how to find upper and lower bounds for this range, a range which turns out to be quite narrow in a lot of cases.
doi_str_mv 10.1016/j.insmatheco.2006.04.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36554593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668706000679</els_id><sourcerecordid>36554593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-7900244f3af4eeec71426afa40aab5e8ebc8f8e1d5e963367872d74b613798d23</originalsourceid><addsrcrecordid>eNqNUctO5DAQtNAiMTvwDyMOe0uw4_dxYR-ARuICZ8vjdBiPJg_sBIm_p6NBIHGBQ7n7UNXdriJkxWjJKFMXuzJ2ufXjFkJfVpSqkoqS0uqILJjRvJBW2h9kgVRdKGX0CfmZ845SyqzSC7L6E_OY4mYaY98VTQJY9cPcr4YUQ-weT8lx4_cZzt7qkjz8-3t_dV2s7_7fXP1eF0FyNRba4k4hGu4bAQBBM1Ep33hBvd9IMLAJpjHAaglWca600VWtxUYxrq2pK74kvw5zh9Q_TZBH18YcYL_3HfRTdlxJKaTl3yAKI5QxXxKZlcaYaiaefyLu-il1-FtXUcM0LqZIMgdSSH3OCRqHBrU-vThG3ZyE27mPJNychKPCoSsovT1IEwwQ3nVoEwqm1rtnx9EofF4QqNRY4twiBgTTFq-1bju2OOzyMAwwjOcIyeUQoQtQxwRhdHUfv77oFUbqrjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208175540</pqid></control><display><type>article</type><title>Distribution-free option pricing</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>Elsevier SD Backfile Mathematics</source><creator>Schepper, Ann De ; Heijnen, Bart</creator><creatorcontrib>Schepper, Ann De ; Heijnen, Bart</creatorcontrib><description>Nobody doubts the power of the Black and Scholes option pricing method, yet there are situations in which the hypothesis of a lognormal model is too restrictive. A natural way to deal with this problem consists of weakening the hypothesis, by fixing only successive moments and possibly the mode of the price process of a risky asset, and not the complete distribution. As a consequence of this generalization, the option price is no longer a unique value, but rather a range of possible values. In the present paper, we show how to find upper and lower bounds for this range, a range which turns out to be quite narrow in a lot of cases.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2006.04.002</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Assets ; Black–Scholes ; Distribution ; Hypotheses ; IE50 ; IM10 ; Information economics ; Limited information ; Marginal pricing ; Model testing ; Option pricing ; Studies</subject><ispartof>Insurance, mathematics &amp; economics, 2007-03, Vol.40 (2), p.179-199</ispartof><rights>2006 Elsevier Ltd</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-7900244f3af4eeec71426afa40aab5e8ebc8f8e1d5e963367872d74b613798d23</citedby><cites>FETCH-LOGICAL-c536t-7900244f3af4eeec71426afa40aab5e8ebc8f8e1d5e963367872d74b613798d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668706000679$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a40_3ay_3a2007_3ai_3a2_3ap_3a179-199.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Schepper, Ann De</creatorcontrib><creatorcontrib>Heijnen, Bart</creatorcontrib><title>Distribution-free option pricing</title><title>Insurance, mathematics &amp; economics</title><description>Nobody doubts the power of the Black and Scholes option pricing method, yet there are situations in which the hypothesis of a lognormal model is too restrictive. A natural way to deal with this problem consists of weakening the hypothesis, by fixing only successive moments and possibly the mode of the price process of a risky asset, and not the complete distribution. As a consequence of this generalization, the option price is no longer a unique value, but rather a range of possible values. In the present paper, we show how to find upper and lower bounds for this range, a range which turns out to be quite narrow in a lot of cases.</description><subject>Assets</subject><subject>Black–Scholes</subject><subject>Distribution</subject><subject>Hypotheses</subject><subject>IE50</subject><subject>IM10</subject><subject>Information economics</subject><subject>Limited information</subject><subject>Marginal pricing</subject><subject>Model testing</subject><subject>Option pricing</subject><subject>Studies</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNUctO5DAQtNAiMTvwDyMOe0uw4_dxYR-ARuICZ8vjdBiPJg_sBIm_p6NBIHGBQ7n7UNXdriJkxWjJKFMXuzJ2ufXjFkJfVpSqkoqS0uqILJjRvJBW2h9kgVRdKGX0CfmZ845SyqzSC7L6E_OY4mYaY98VTQJY9cPcr4YUQ-weT8lx4_cZzt7qkjz8-3t_dV2s7_7fXP1eF0FyNRba4k4hGu4bAQBBM1Ep33hBvd9IMLAJpjHAaglWca600VWtxUYxrq2pK74kvw5zh9Q_TZBH18YcYL_3HfRTdlxJKaTl3yAKI5QxXxKZlcaYaiaefyLu-il1-FtXUcM0LqZIMgdSSH3OCRqHBrU-vThG3ZyE27mPJNychKPCoSsovT1IEwwQ3nVoEwqm1rtnx9EofF4QqNRY4twiBgTTFq-1bju2OOzyMAwwjOcIyeUQoQtQxwRhdHUfv77oFUbqrjs</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Schepper, Ann De</creator><creator>Heijnen, Bart</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20070301</creationdate><title>Distribution-free option pricing</title><author>Schepper, Ann De ; Heijnen, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-7900244f3af4eeec71426afa40aab5e8ebc8f8e1d5e963367872d74b613798d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Assets</topic><topic>Black–Scholes</topic><topic>Distribution</topic><topic>Hypotheses</topic><topic>IE50</topic><topic>IM10</topic><topic>Information economics</topic><topic>Limited information</topic><topic>Marginal pricing</topic><topic>Model testing</topic><topic>Option pricing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schepper, Ann De</creatorcontrib><creatorcontrib>Heijnen, Bart</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schepper, Ann De</au><au>Heijnen, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution-free option pricing</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>40</volume><issue>2</issue><spage>179</spage><epage>199</epage><pages>179-199</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>Nobody doubts the power of the Black and Scholes option pricing method, yet there are situations in which the hypothesis of a lognormal model is too restrictive. A natural way to deal with this problem consists of weakening the hypothesis, by fixing only successive moments and possibly the mode of the price process of a risky asset, and not the complete distribution. As a consequence of this generalization, the option price is no longer a unique value, but rather a range of possible values. In the present paper, we show how to find upper and lower bounds for this range, a range which turns out to be quite narrow in a lot of cases.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2006.04.002</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2007-03, Vol.40 (2), p.179-199
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_36554593
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection; Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; Elsevier SD Backfile Mathematics
subjects Assets
Black–Scholes
Distribution
Hypotheses
IE50
IM10
Information economics
Limited information
Marginal pricing
Model testing
Option pricing
Studies
title Distribution-free option pricing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution-free%20option%20pricing&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Schepper,%20Ann%20De&rft.date=2007-03-01&rft.volume=40&rft.issue=2&rft.spage=179&rft.epage=199&rft.pages=179-199&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2006.04.002&rft_dat=%3Cproquest_cross%3E36554593%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-7900244f3af4eeec71426afa40aab5e8ebc8f8e1d5e963367872d74b613798d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208175540&rft_id=info:pmid/&rfr_iscdi=true