Loading…

The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation

We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We...

Full description

Saved in:
Bibliographic Details
Published in:Economic theory 2006-08, Vol.28 (3), p.481-512
Main Authors: Karatzas, Ioannis, Shubik, Martin, Sudderth, William D., Geanakoplos, John
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63
cites
container_end_page 512
container_issue 3
container_start_page 481
container_title Economic theory
container_volume 28
creator Karatzas, Ioannis
Shubik, Martin
Sudderth, William D.
Geanakoplos, John
description We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We show that the equilibrium long-run rate of inflation is strictly higher, on almost every path of endowment realizations, than it would be if the endowments were constant. Indeed, we present an explicit formula for the long-run rate of inflation, based on the famous Fisher equation. The Fisher equation says the short-run rate of inflation should equal the nominal rate of interest less the real rate of interest. The long-run Fisher equation for our stochastic economy is similar, but with the rate of inflation replaced by the harmonic mean of the growth rate of money.
doi_str_mv 10.1007/s00199-005-0648-z
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36558720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25056088</jstor_id><sourcerecordid>25056088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63</originalsourceid><addsrcrecordid>eNpdkE1PAjEQQBujiYj-AA8mjQdvq9N2-7FHJSAYEhMD56aUbliydKHdPcCvt7jGg6c5zHuTyUPonsAzAZAvEYAURQbAMxC5yk4XaEByRjPIZXGJBlAwlVHKi2t0E-MWEsiFGqCPxcbhmS9r01aNN-GI3yoTcVPiL2dqvPTWhdZUvj1i49e4TfTUhF3jK4snVdy4gMeH7ke-RVelqaO7-51DtJyMF6NpNv98n41e55llSraZIUW5lsqsc0aIIUIpp6wkJmcChC1WKyqdMoowJ0AaYWUBaiXoOq2oc0awIXrq7-5Dc-hcbPWuitbVtfGu6aJmgnMlKSTw8R-4bbrg02-a0pxwmcAEkR6yoYkxuFLvQ7VLITQBfU6r-7Q6FdPntPqUnIfe2ca2CX8C5cAFKMW-AVY-dPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224157655</pqid></control><display><type>article</type><title>The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Karatzas, Ioannis ; Shubik, Martin ; Sudderth, William D. ; Geanakoplos, John</creator><creatorcontrib>Karatzas, Ioannis ; Shubik, Martin ; Sudderth, William D. ; Geanakoplos, John</creatorcontrib><description>We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We show that the equilibrium long-run rate of inflation is strictly higher, on almost every path of endowment realizations, than it would be if the endowments were constant. Indeed, we present an explicit formula for the long-run rate of inflation, based on the famous Fisher equation. The Fisher equation says the short-run rate of inflation should equal the nominal rate of interest less the real rate of interest. The long-run Fisher equation for our stochastic economy is similar, but with the rate of inflation replaced by the harmonic mean of the growth rate of money.</description><identifier>ISSN: 0938-2259</identifier><identifier>EISSN: 1432-0479</identifier><identifier>DOI: 10.1007/s00199-005-0648-z</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Bank loans ; Bias ; Central banks ; Consumption ; Economic equilibrium ; Economic theory ; Economic uncertainty ; Economics ; Endowment ; Endowments ; Equilibrium ; Expenditures ; Fisher effect ; Infinity ; Inflation ; Inflation rates ; Interest rates ; Liquids ; Mathematical methods ; Monetary economics ; Monetary models ; Prices ; Studies ; Uncertainty ; Utility functions</subject><ispartof>Economic theory, 2006-08, Vol.28 (3), p.481-512</ispartof><rights>Copyright 2006 Springer-Verlag Berlin Heidelberg</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/224157655/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/224157655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,33224,36060,36061,44363,58238,58471,74895</link.rule.ids></links><search><creatorcontrib>Karatzas, Ioannis</creatorcontrib><creatorcontrib>Shubik, Martin</creatorcontrib><creatorcontrib>Sudderth, William D.</creatorcontrib><creatorcontrib>Geanakoplos, John</creatorcontrib><title>The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation</title><title>Economic theory</title><description>We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We show that the equilibrium long-run rate of inflation is strictly higher, on almost every path of endowment realizations, than it would be if the endowments were constant. Indeed, we present an explicit formula for the long-run rate of inflation, based on the famous Fisher equation. The Fisher equation says the short-run rate of inflation should equal the nominal rate of interest less the real rate of interest. The long-run Fisher equation for our stochastic economy is similar, but with the rate of inflation replaced by the harmonic mean of the growth rate of money.</description><subject>Bank loans</subject><subject>Bias</subject><subject>Central banks</subject><subject>Consumption</subject><subject>Economic equilibrium</subject><subject>Economic theory</subject><subject>Economic uncertainty</subject><subject>Economics</subject><subject>Endowment</subject><subject>Endowments</subject><subject>Equilibrium</subject><subject>Expenditures</subject><subject>Fisher effect</subject><subject>Infinity</subject><subject>Inflation</subject><subject>Inflation rates</subject><subject>Interest rates</subject><subject>Liquids</subject><subject>Mathematical methods</subject><subject>Monetary economics</subject><subject>Monetary models</subject><subject>Prices</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Utility functions</subject><issn>0938-2259</issn><issn>1432-0479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNpdkE1PAjEQQBujiYj-AA8mjQdvq9N2-7FHJSAYEhMD56aUbliydKHdPcCvt7jGg6c5zHuTyUPonsAzAZAvEYAURQbAMxC5yk4XaEByRjPIZXGJBlAwlVHKi2t0E-MWEsiFGqCPxcbhmS9r01aNN-GI3yoTcVPiL2dqvPTWhdZUvj1i49e4TfTUhF3jK4snVdy4gMeH7ke-RVelqaO7-51DtJyMF6NpNv98n41e55llSraZIUW5lsqsc0aIIUIpp6wkJmcChC1WKyqdMoowJ0AaYWUBaiXoOq2oc0awIXrq7-5Dc-hcbPWuitbVtfGu6aJmgnMlKSTw8R-4bbrg02-a0pxwmcAEkR6yoYkxuFLvQ7VLITQBfU6r-7Q6FdPntPqUnIfe2ca2CX8C5cAFKMW-AVY-dPo</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Karatzas, Ioannis</creator><creator>Shubik, Martin</creator><creator>Sudderth, William D.</creator><creator>Geanakoplos, John</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20060801</creationdate><title>The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation</title><author>Karatzas, Ioannis ; Shubik, Martin ; Sudderth, William D. ; Geanakoplos, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bank loans</topic><topic>Bias</topic><topic>Central banks</topic><topic>Consumption</topic><topic>Economic equilibrium</topic><topic>Economic theory</topic><topic>Economic uncertainty</topic><topic>Economics</topic><topic>Endowment</topic><topic>Endowments</topic><topic>Equilibrium</topic><topic>Expenditures</topic><topic>Fisher effect</topic><topic>Infinity</topic><topic>Inflation</topic><topic>Inflation rates</topic><topic>Interest rates</topic><topic>Liquids</topic><topic>Mathematical methods</topic><topic>Monetary economics</topic><topic>Monetary models</topic><topic>Prices</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karatzas, Ioannis</creatorcontrib><creatorcontrib>Shubik, Martin</creatorcontrib><creatorcontrib>Sudderth, William D.</creatorcontrib><creatorcontrib>Geanakoplos, John</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karatzas, Ioannis</au><au>Shubik, Martin</au><au>Sudderth, William D.</au><au>Geanakoplos, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation</atitle><jtitle>Economic theory</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>28</volume><issue>3</issue><spage>481</spage><epage>512</epage><pages>481-512</pages><issn>0938-2259</issn><eissn>1432-0479</eissn><abstract>We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We show that the equilibrium long-run rate of inflation is strictly higher, on almost every path of endowment realizations, than it would be if the endowments were constant. Indeed, we present an explicit formula for the long-run rate of inflation, based on the famous Fisher equation. The Fisher equation says the short-run rate of inflation should equal the nominal rate of interest less the real rate of interest. The long-run Fisher equation for our stochastic economy is similar, but with the rate of inflation replaced by the harmonic mean of the growth rate of money.</abstract><cop>Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00199-005-0648-z</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-2259
ispartof Economic theory, 2006-08, Vol.28 (3), p.481-512
issn 0938-2259
1432-0479
language eng
recordid cdi_proquest_miscellaneous_36558720
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; Springer Nature
subjects Bank loans
Bias
Central banks
Consumption
Economic equilibrium
Economic theory
Economic uncertainty
Economics
Endowment
Endowments
Equilibrium
Expenditures
Fisher effect
Infinity
Inflation
Inflation rates
Interest rates
Liquids
Mathematical methods
Monetary economics
Monetary models
Prices
Studies
Uncertainty
Utility functions
title The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Inflationary%20Bias%20of%20Real%20Uncertainty%20and%20the%20Harmonic%20Fisher%20Equation&rft.jtitle=Economic%20theory&rft.au=Karatzas,%20Ioannis&rft.date=2006-08-01&rft.volume=28&rft.issue=3&rft.spage=481&rft.epage=512&rft.pages=481-512&rft.issn=0938-2259&rft.eissn=1432-0479&rft_id=info:doi/10.1007/s00199-005-0648-z&rft_dat=%3Cjstor_proqu%3E25056088%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=224157655&rft_id=info:pmid/&rft_jstor_id=25056088&rfr_iscdi=true