Loading…
The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation
We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We...
Saved in:
Published in: | Economic theory 2006-08, Vol.28 (3), p.481-512 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63 |
---|---|
cites | |
container_end_page | 512 |
container_issue | 3 |
container_start_page | 481 |
container_title | Economic theory |
container_volume | 28 |
creator | Karatzas, Ioannis Shubik, Martin Sudderth, William D. Geanakoplos, John |
description | We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We show that the equilibrium long-run rate of inflation is strictly higher, on almost every path of endowment realizations, than it would be if the endowments were constant. Indeed, we present an explicit formula for the long-run rate of inflation, based on the famous Fisher equation. The Fisher equation says the short-run rate of inflation should equal the nominal rate of interest less the real rate of interest. The long-run Fisher equation for our stochastic economy is similar, but with the rate of inflation replaced by the harmonic mean of the growth rate of money. |
doi_str_mv | 10.1007/s00199-005-0648-z |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36558720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25056088</jstor_id><sourcerecordid>25056088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63</originalsourceid><addsrcrecordid>eNpdkE1PAjEQQBujiYj-AA8mjQdvq9N2-7FHJSAYEhMD56aUbliydKHdPcCvt7jGg6c5zHuTyUPonsAzAZAvEYAURQbAMxC5yk4XaEByRjPIZXGJBlAwlVHKi2t0E-MWEsiFGqCPxcbhmS9r01aNN-GI3yoTcVPiL2dqvPTWhdZUvj1i49e4TfTUhF3jK4snVdy4gMeH7ke-RVelqaO7-51DtJyMF6NpNv98n41e55llSraZIUW5lsqsc0aIIUIpp6wkJmcChC1WKyqdMoowJ0AaYWUBaiXoOq2oc0awIXrq7-5Dc-hcbPWuitbVtfGu6aJmgnMlKSTw8R-4bbrg02-a0pxwmcAEkR6yoYkxuFLvQ7VLITQBfU6r-7Q6FdPntPqUnIfe2ca2CX8C5cAFKMW-AVY-dPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224157655</pqid></control><display><type>article</type><title>The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Karatzas, Ioannis ; Shubik, Martin ; Sudderth, William D. ; Geanakoplos, John</creator><creatorcontrib>Karatzas, Ioannis ; Shubik, Martin ; Sudderth, William D. ; Geanakoplos, John</creatorcontrib><description>We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We show that the equilibrium long-run rate of inflation is strictly higher, on almost every path of endowment realizations, than it would be if the endowments were constant. Indeed, we present an explicit formula for the long-run rate of inflation, based on the famous Fisher equation. The Fisher equation says the short-run rate of inflation should equal the nominal rate of interest less the real rate of interest. The long-run Fisher equation for our stochastic economy is similar, but with the rate of inflation replaced by the harmonic mean of the growth rate of money.</description><identifier>ISSN: 0938-2259</identifier><identifier>EISSN: 1432-0479</identifier><identifier>DOI: 10.1007/s00199-005-0648-z</identifier><language>eng</language><publisher>Heidelberg: Springer-Verlag</publisher><subject>Bank loans ; Bias ; Central banks ; Consumption ; Economic equilibrium ; Economic theory ; Economic uncertainty ; Economics ; Endowment ; Endowments ; Equilibrium ; Expenditures ; Fisher effect ; Infinity ; Inflation ; Inflation rates ; Interest rates ; Liquids ; Mathematical methods ; Monetary economics ; Monetary models ; Prices ; Studies ; Uncertainty ; Utility functions</subject><ispartof>Economic theory, 2006-08, Vol.28 (3), p.481-512</ispartof><rights>Copyright 2006 Springer-Verlag Berlin Heidelberg</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/224157655/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/224157655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,33224,36060,36061,44363,58238,58471,74895</link.rule.ids></links><search><creatorcontrib>Karatzas, Ioannis</creatorcontrib><creatorcontrib>Shubik, Martin</creatorcontrib><creatorcontrib>Sudderth, William D.</creatorcontrib><creatorcontrib>Geanakoplos, John</creatorcontrib><title>The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation</title><title>Economic theory</title><description>We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We show that the equilibrium long-run rate of inflation is strictly higher, on almost every path of endowment realizations, than it would be if the endowments were constant. Indeed, we present an explicit formula for the long-run rate of inflation, based on the famous Fisher equation. The Fisher equation says the short-run rate of inflation should equal the nominal rate of interest less the real rate of interest. The long-run Fisher equation for our stochastic economy is similar, but with the rate of inflation replaced by the harmonic mean of the growth rate of money.</description><subject>Bank loans</subject><subject>Bias</subject><subject>Central banks</subject><subject>Consumption</subject><subject>Economic equilibrium</subject><subject>Economic theory</subject><subject>Economic uncertainty</subject><subject>Economics</subject><subject>Endowment</subject><subject>Endowments</subject><subject>Equilibrium</subject><subject>Expenditures</subject><subject>Fisher effect</subject><subject>Infinity</subject><subject>Inflation</subject><subject>Inflation rates</subject><subject>Interest rates</subject><subject>Liquids</subject><subject>Mathematical methods</subject><subject>Monetary economics</subject><subject>Monetary models</subject><subject>Prices</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Utility functions</subject><issn>0938-2259</issn><issn>1432-0479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNpdkE1PAjEQQBujiYj-AA8mjQdvq9N2-7FHJSAYEhMD56aUbliydKHdPcCvt7jGg6c5zHuTyUPonsAzAZAvEYAURQbAMxC5yk4XaEByRjPIZXGJBlAwlVHKi2t0E-MWEsiFGqCPxcbhmS9r01aNN-GI3yoTcVPiL2dqvPTWhdZUvj1i49e4TfTUhF3jK4snVdy4gMeH7ke-RVelqaO7-51DtJyMF6NpNv98n41e55llSraZIUW5lsqsc0aIIUIpp6wkJmcChC1WKyqdMoowJ0AaYWUBaiXoOq2oc0awIXrq7-5Dc-hcbPWuitbVtfGu6aJmgnMlKSTw8R-4bbrg02-a0pxwmcAEkR6yoYkxuFLvQ7VLITQBfU6r-7Q6FdPntPqUnIfe2ca2CX8C5cAFKMW-AVY-dPo</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Karatzas, Ioannis</creator><creator>Shubik, Martin</creator><creator>Sudderth, William D.</creator><creator>Geanakoplos, John</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20060801</creationdate><title>The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation</title><author>Karatzas, Ioannis ; Shubik, Martin ; Sudderth, William D. ; Geanakoplos, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bank loans</topic><topic>Bias</topic><topic>Central banks</topic><topic>Consumption</topic><topic>Economic equilibrium</topic><topic>Economic theory</topic><topic>Economic uncertainty</topic><topic>Economics</topic><topic>Endowment</topic><topic>Endowments</topic><topic>Equilibrium</topic><topic>Expenditures</topic><topic>Fisher effect</topic><topic>Infinity</topic><topic>Inflation</topic><topic>Inflation rates</topic><topic>Interest rates</topic><topic>Liquids</topic><topic>Mathematical methods</topic><topic>Monetary economics</topic><topic>Monetary models</topic><topic>Prices</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karatzas, Ioannis</creatorcontrib><creatorcontrib>Shubik, Martin</creatorcontrib><creatorcontrib>Sudderth, William D.</creatorcontrib><creatorcontrib>Geanakoplos, John</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Economic theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karatzas, Ioannis</au><au>Shubik, Martin</au><au>Sudderth, William D.</au><au>Geanakoplos, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation</atitle><jtitle>Economic theory</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>28</volume><issue>3</issue><spage>481</spage><epage>512</epage><pages>481-512</pages><issn>0938-2259</issn><eissn>1432-0479</eissn><abstract>We argue that real uncertainty itself causes long-run nominal inflation. Consider an infinite horizon cash-in-advance economy with a representative agent and real uncertainty, modeled by independent, identically distributed endowments. Suppose the central bank fixes the nominal rate of interest. We show that the equilibrium long-run rate of inflation is strictly higher, on almost every path of endowment realizations, than it would be if the endowments were constant. Indeed, we present an explicit formula for the long-run rate of inflation, based on the famous Fisher equation. The Fisher equation says the short-run rate of inflation should equal the nominal rate of interest less the real rate of interest. The long-run Fisher equation for our stochastic economy is similar, but with the rate of inflation replaced by the harmonic mean of the growth rate of money.</abstract><cop>Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00199-005-0648-z</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-2259 |
ispartof | Economic theory, 2006-08, Vol.28 (3), p.481-512 |
issn | 0938-2259 1432-0479 |
language | eng |
recordid | cdi_proquest_miscellaneous_36558720 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global; Springer Nature |
subjects | Bank loans Bias Central banks Consumption Economic equilibrium Economic theory Economic uncertainty Economics Endowment Endowments Equilibrium Expenditures Fisher effect Infinity Inflation Inflation rates Interest rates Liquids Mathematical methods Monetary economics Monetary models Prices Studies Uncertainty Utility functions |
title | The Inflationary Bias of Real Uncertainty and the Harmonic Fisher Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Inflationary%20Bias%20of%20Real%20Uncertainty%20and%20the%20Harmonic%20Fisher%20Equation&rft.jtitle=Economic%20theory&rft.au=Karatzas,%20Ioannis&rft.date=2006-08-01&rft.volume=28&rft.issue=3&rft.spage=481&rft.epage=512&rft.pages=481-512&rft.issn=0938-2259&rft.eissn=1432-0479&rft_id=info:doi/10.1007/s00199-005-0648-z&rft_dat=%3Cjstor_proqu%3E25056088%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-a19fd78ad4311a1688e8c71a43606c9bb27e8a813e607a6c7908b62dc9b2eea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=224157655&rft_id=info:pmid/&rft_jstor_id=25056088&rfr_iscdi=true |