Loading…
High-Dimension, Low-Sample Size Perspectives in Constrained Statistical Inference: The SARSCoV RNA Genome in Illustration
High-dimensional categorical data models, often with inadequately large sample sizes, crop up in many fields of application. The SARS epidemic, originating in southern China in 2002, had an identified single-stranded and positive-sense RNA virus with large genome size and moderate mutation rate. The...
Saved in:
Published in: | Journal of the American Statistical Association 2007-06, Vol.102 (478), p.686-694 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-dimensional categorical data models, often with inadequately large sample sizes, crop up in many fields of application. The SARS epidemic, originating in southern China in 2002, had an identified single-stranded and positive-sense RNA virus with large genome size and moderate mutation rate. The present genomic study is used as a prime illustration for motivating appropriate statistical methodology for comprehending the genomic variation in such high-dimensional categorical data models. Because of underlying restraints, a pseudomarginal approach based on Hamming distance is considered in a constrained statistical inference setup. The union-intersection principle and jackknifing methods are incorporated in exploring appropriate statistical procedures. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1198/016214507000000077 |