Loading…
Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses
We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic var...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2008-02, Vol.70 (1), p.31-52 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13 |
container_end_page | 52 |
container_issue | 1 |
container_start_page | 31 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 70 |
creator | Ivette Gomes, M de Haan, Laurens Rodrigues, Lígia Henriques |
description | We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic variance of the maximum likelihood estimator of γ, under a strict Pareto model. We consider the external estimation not only of a second-order shape parameter ρ but also of a second-order scale parameter β. This will enable us to reduce the asymptotic variance of the final estimators under consideration, compared with second-order reduced bias estimators that are already available in the literature. The second-order reduced bias estimators that are considered are also studied for finite samples, through Monte Carlo techniques, as well as applied to real data in the field of finance. |
doi_str_mv | 10.1111/j.1467-9868.2007.00620.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36838366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20203810</jstor_id><sourcerecordid>20203810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13</originalsourceid><addsrcrecordid>eNqNkm9r1EAQxoNYsFY_ghgEfZe4f5LdjeALW7QVqoLXWhFk2Wwmd0lz2XM31-a-vZOmHOIbXZjshuf3TGZ2EkUxJSnF9bpNaSZkUiihUkaITAkRjKTjg-hwLzzEMxdFIjPKHkWPQ2gJLiH5YfTzwjRd3PQVjDGEoVmboXF9XDsfr8Dc7JIBdajitaugC29iY61b48uMuTouGxPQH99Cs1wNSHZumcBoIQQIT6KD2nQBnt7vR9Hlh_cXJ2fJ-ZfTjyfvzhObK0oSWjJglOdc1Lk1BSkqRZjJSA7AK0LACEWyrAYhJbelEhXPClsV3DJbl3lJ-VH0as678e7XFvvQ6yZY6DrTg9sGzYXiigvxbzDjUhZ8Al_8BbZu63tsQuMtK5FLohBSM2S9C8FDrTceb9DvNCV6mo5u9TQEPQ1h8kl9Nx09ovVstnrYgN37ys60zodQ6hvNjST42GFMn8StwaAYGwxOdc70alhjqpf3pZpgTVd709sm7FOil1GiCuTeztwtTnT336Xqr4vFMZ7Q_2z2t2Fw_o_8qOEUUU9mvQkDjHvd-GuNv5rM9dXnU_0pO_7-49sVFo_885mvjdNm6bHmywUjlGOzGRN5zn8DoWnctQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200865708</pqid></control><display><type>article</type><title>Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><source>Alma/SFX Local Collection</source><creator>Ivette Gomes, M ; de Haan, Laurens ; Rodrigues, Lígia Henriques</creator><creatorcontrib>Ivette Gomes, M ; de Haan, Laurens ; Rodrigues, Lígia Henriques</creatorcontrib><description>We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic variance of the maximum likelihood estimator of γ, under a strict Pareto model. We consider the external estimation not only of a second-order shape parameter ρ but also of a second-order scale parameter β. This will enable us to reduce the asymptotic variance of the final estimators under consideration, compared with second-order reduced bias estimators that are already available in the literature. The second-order reduced bias estimators that are considered are also studied for finite samples, through Monte Carlo techniques, as well as applied to real data in the field of finance.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2007.00620.x</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Asymptotic value ; Bias ; Confidence interval ; Consistent estimators ; Distribution ; Estimation ; Estimation bias ; Estimators ; Exact sciences and technology ; General topics ; Heavy tails ; Linear inference, regression ; Log-excesses ; Mathematical expressions ; Mathematics ; Maximum likelihood ; Maximum likelihood estimation ; Maximum likelihood method ; Monte Carlo simulation ; Nonparametric inference ; Parametric inference ; Probability and statistics ; Sampling bias ; Sciences and techniques of general use ; Semiparametric estimation ; Statistical methods ; Statistical variance ; Statistics ; Statistics of extremes ; Studies ; Traffic estimation</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2008-02, Vol.70 (1), p.31-52</ispartof><rights>Copyright 2008 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2008 INIST-CNRS</rights><rights>2008 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13</citedby><cites>FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20203810$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20203810$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,33200,33201,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20021089$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a70_3ay_3a2008_3ai_3a1_3ap_3a31-52.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivette Gomes, M</creatorcontrib><creatorcontrib>de Haan, Laurens</creatorcontrib><creatorcontrib>Rodrigues, Lígia Henriques</creatorcontrib><title>Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic variance of the maximum likelihood estimator of γ, under a strict Pareto model. We consider the external estimation not only of a second-order shape parameter ρ but also of a second-order scale parameter β. This will enable us to reduce the asymptotic variance of the final estimators under consideration, compared with second-order reduced bias estimators that are already available in the literature. The second-order reduced bias estimators that are considered are also studied for finite samples, through Monte Carlo techniques, as well as applied to real data in the field of finance.</description><subject>Asymptotic value</subject><subject>Bias</subject><subject>Confidence interval</subject><subject>Consistent estimators</subject><subject>Distribution</subject><subject>Estimation</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Heavy tails</subject><subject>Linear inference, regression</subject><subject>Log-excesses</subject><subject>Mathematical expressions</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Sampling bias</subject><subject>Sciences and techniques of general use</subject><subject>Semiparametric estimation</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Statistics of extremes</subject><subject>Studies</subject><subject>Traffic estimation</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkm9r1EAQxoNYsFY_ghgEfZe4f5LdjeALW7QVqoLXWhFk2Wwmd0lz2XM31-a-vZOmHOIbXZjshuf3TGZ2EkUxJSnF9bpNaSZkUiihUkaITAkRjKTjg-hwLzzEMxdFIjPKHkWPQ2gJLiH5YfTzwjRd3PQVjDGEoVmboXF9XDsfr8Dc7JIBdajitaugC29iY61b48uMuTouGxPQH99Cs1wNSHZumcBoIQQIT6KD2nQBnt7vR9Hlh_cXJ2fJ-ZfTjyfvzhObK0oSWjJglOdc1Lk1BSkqRZjJSA7AK0LACEWyrAYhJbelEhXPClsV3DJbl3lJ-VH0as678e7XFvvQ6yZY6DrTg9sGzYXiigvxbzDjUhZ8Al_8BbZu63tsQuMtK5FLohBSM2S9C8FDrTceb9DvNCV6mo5u9TQEPQ1h8kl9Nx09ovVstnrYgN37ys60zodQ6hvNjST42GFMn8StwaAYGwxOdc70alhjqpf3pZpgTVd709sm7FOil1GiCuTeztwtTnT336Xqr4vFMZ7Q_2z2t2Fw_o_8qOEUUU9mvQkDjHvd-GuNv5rM9dXnU_0pO_7-49sVFo_885mvjdNm6bHmywUjlGOzGRN5zn8DoWnctQ</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Ivette Gomes, M</creator><creator>de Haan, Laurens</creator><creator>Rodrigues, Lígia Henriques</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200802</creationdate><title>Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses</title><author>Ivette Gomes, M ; de Haan, Laurens ; Rodrigues, Lígia Henriques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Asymptotic value</topic><topic>Bias</topic><topic>Confidence interval</topic><topic>Consistent estimators</topic><topic>Distribution</topic><topic>Estimation</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Heavy tails</topic><topic>Linear inference, regression</topic><topic>Log-excesses</topic><topic>Mathematical expressions</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Sampling bias</topic><topic>Sciences and techniques of general use</topic><topic>Semiparametric estimation</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Statistics of extremes</topic><topic>Studies</topic><topic>Traffic estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivette Gomes, M</creatorcontrib><creatorcontrib>de Haan, Laurens</creatorcontrib><creatorcontrib>Rodrigues, Lígia Henriques</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivette Gomes, M</au><au>de Haan, Laurens</au><au>Rodrigues, Lígia Henriques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2008-02</date><risdate>2008</risdate><volume>70</volume><issue>1</issue><spage>31</spage><epage>52</epage><pages>31-52</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic variance of the maximum likelihood estimator of γ, under a strict Pareto model. We consider the external estimation not only of a second-order shape parameter ρ but also of a second-order scale parameter β. This will enable us to reduce the asymptotic variance of the final estimators under consideration, compared with second-order reduced bias estimators that are already available in the literature. The second-order reduced bias estimators that are considered are also studied for finite samples, through Monte Carlo techniques, as well as applied to real data in the field of finance.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2007.00620.x</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2008-02, Vol.70 (1), p.31-52 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_36838366 |
source | International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; BSC - Ebsco (Business Source Ultimate); Alma/SFX Local Collection |
subjects | Asymptotic value Bias Confidence interval Consistent estimators Distribution Estimation Estimation bias Estimators Exact sciences and technology General topics Heavy tails Linear inference, regression Log-excesses Mathematical expressions Mathematics Maximum likelihood Maximum likelihood estimation Maximum likelihood method Monte Carlo simulation Nonparametric inference Parametric inference Probability and statistics Sampling bias Sciences and techniques of general use Semiparametric estimation Statistical methods Statistical variance Statistics Statistics of extremes Studies Traffic estimation |
title | Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tail%20index%20estimation%20for%20heavy-tailed%20models:%20accommodation%20of%20bias%20in%20weighted%20log-excesses&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Ivette%20Gomes,%20M&rft.date=2008-02&rft.volume=70&rft.issue=1&rft.spage=31&rft.epage=52&rft.pages=31-52&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2007.00620.x&rft_dat=%3Cjstor_proqu%3E20203810%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200865708&rft_id=info:pmid/&rft_jstor_id=20203810&rfr_iscdi=true |