Loading…

Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses

We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic var...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2008-02, Vol.70 (1), p.31-52
Main Authors: Ivette Gomes, M, de Haan, Laurens, Rodrigues, Lígia Henriques
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13
cites cdi_FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13
container_end_page 52
container_issue 1
container_start_page 31
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 70
creator Ivette Gomes, M
de Haan, Laurens
Rodrigues, Lígia Henriques
description We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic variance of the maximum likelihood estimator of γ, under a strict Pareto model. We consider the external estimation not only of a second-order shape parameter ρ but also of a second-order scale parameter β. This will enable us to reduce the asymptotic variance of the final estimators under consideration, compared with second-order reduced bias estimators that are already available in the literature. The second-order reduced bias estimators that are considered are also studied for finite samples, through Monte Carlo techniques, as well as applied to real data in the field of finance.
doi_str_mv 10.1111/j.1467-9868.2007.00620.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_36838366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20203810</jstor_id><sourcerecordid>20203810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13</originalsourceid><addsrcrecordid>eNqNkm9r1EAQxoNYsFY_ghgEfZe4f5LdjeALW7QVqoLXWhFk2Wwmd0lz2XM31-a-vZOmHOIbXZjshuf3TGZ2EkUxJSnF9bpNaSZkUiihUkaITAkRjKTjg-hwLzzEMxdFIjPKHkWPQ2gJLiH5YfTzwjRd3PQVjDGEoVmboXF9XDsfr8Dc7JIBdajitaugC29iY61b48uMuTouGxPQH99Cs1wNSHZumcBoIQQIT6KD2nQBnt7vR9Hlh_cXJ2fJ-ZfTjyfvzhObK0oSWjJglOdc1Lk1BSkqRZjJSA7AK0LACEWyrAYhJbelEhXPClsV3DJbl3lJ-VH0as678e7XFvvQ6yZY6DrTg9sGzYXiigvxbzDjUhZ8Al_8BbZu63tsQuMtK5FLohBSM2S9C8FDrTceb9DvNCV6mo5u9TQEPQ1h8kl9Nx09ovVstnrYgN37ys60zodQ6hvNjST42GFMn8StwaAYGwxOdc70alhjqpf3pZpgTVd709sm7FOil1GiCuTeztwtTnT336Xqr4vFMZ7Q_2z2t2Fw_o_8qOEUUU9mvQkDjHvd-GuNv5rM9dXnU_0pO_7-49sVFo_885mvjdNm6bHmywUjlGOzGRN5zn8DoWnctQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200865708</pqid></control><display><type>article</type><title>Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><source>Alma/SFX Local Collection</source><creator>Ivette Gomes, M ; de Haan, Laurens ; Rodrigues, Lígia Henriques</creator><creatorcontrib>Ivette Gomes, M ; de Haan, Laurens ; Rodrigues, Lígia Henriques</creatorcontrib><description>We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic variance of the maximum likelihood estimator of γ, under a strict Pareto model. We consider the external estimation not only of a second-order shape parameter ρ but also of a second-order scale parameter β. This will enable us to reduce the asymptotic variance of the final estimators under consideration, compared with second-order reduced bias estimators that are already available in the literature. The second-order reduced bias estimators that are considered are also studied for finite samples, through Monte Carlo techniques, as well as applied to real data in the field of finance.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2007.00620.x</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Asymptotic value ; Bias ; Confidence interval ; Consistent estimators ; Distribution ; Estimation ; Estimation bias ; Estimators ; Exact sciences and technology ; General topics ; Heavy tails ; Linear inference, regression ; Log-excesses ; Mathematical expressions ; Mathematics ; Maximum likelihood ; Maximum likelihood estimation ; Maximum likelihood method ; Monte Carlo simulation ; Nonparametric inference ; Parametric inference ; Probability and statistics ; Sampling bias ; Sciences and techniques of general use ; Semiparametric estimation ; Statistical methods ; Statistical variance ; Statistics ; Statistics of extremes ; Studies ; Traffic estimation</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2008-02, Vol.70 (1), p.31-52</ispartof><rights>Copyright 2008 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2008 INIST-CNRS</rights><rights>2008 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13</citedby><cites>FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20203810$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20203810$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,33200,33201,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20021089$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a70_3ay_3a2008_3ai_3a1_3ap_3a31-52.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivette Gomes, M</creatorcontrib><creatorcontrib>de Haan, Laurens</creatorcontrib><creatorcontrib>Rodrigues, Lígia Henriques</creatorcontrib><title>Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic variance of the maximum likelihood estimator of γ, under a strict Pareto model. We consider the external estimation not only of a second-order shape parameter ρ but also of a second-order scale parameter β. This will enable us to reduce the asymptotic variance of the final estimators under consideration, compared with second-order reduced bias estimators that are already available in the literature. The second-order reduced bias estimators that are considered are also studied for finite samples, through Monte Carlo techniques, as well as applied to real data in the field of finance.</description><subject>Asymptotic value</subject><subject>Bias</subject><subject>Confidence interval</subject><subject>Consistent estimators</subject><subject>Distribution</subject><subject>Estimation</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Heavy tails</subject><subject>Linear inference, regression</subject><subject>Log-excesses</subject><subject>Mathematical expressions</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric inference</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Sampling bias</subject><subject>Sciences and techniques of general use</subject><subject>Semiparametric estimation</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Statistics of extremes</subject><subject>Studies</subject><subject>Traffic estimation</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkm9r1EAQxoNYsFY_ghgEfZe4f5LdjeALW7QVqoLXWhFk2Wwmd0lz2XM31-a-vZOmHOIbXZjshuf3TGZ2EkUxJSnF9bpNaSZkUiihUkaITAkRjKTjg-hwLzzEMxdFIjPKHkWPQ2gJLiH5YfTzwjRd3PQVjDGEoVmboXF9XDsfr8Dc7JIBdajitaugC29iY61b48uMuTouGxPQH99Cs1wNSHZumcBoIQQIT6KD2nQBnt7vR9Hlh_cXJ2fJ-ZfTjyfvzhObK0oSWjJglOdc1Lk1BSkqRZjJSA7AK0LACEWyrAYhJbelEhXPClsV3DJbl3lJ-VH0as678e7XFvvQ6yZY6DrTg9sGzYXiigvxbzDjUhZ8Al_8BbZu63tsQuMtK5FLohBSM2S9C8FDrTceb9DvNCV6mo5u9TQEPQ1h8kl9Nx09ovVstnrYgN37ys60zodQ6hvNjST42GFMn8StwaAYGwxOdc70alhjqpf3pZpgTVd709sm7FOil1GiCuTeztwtTnT336Xqr4vFMZ7Q_2z2t2Fw_o_8qOEUUU9mvQkDjHvd-GuNv5rM9dXnU_0pO_7-49sVFo_885mvjdNm6bHmywUjlGOzGRN5zn8DoWnctQ</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Ivette Gomes, M</creator><creator>de Haan, Laurens</creator><creator>Rodrigues, Lígia Henriques</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200802</creationdate><title>Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses</title><author>Ivette Gomes, M ; de Haan, Laurens ; Rodrigues, Lígia Henriques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Asymptotic value</topic><topic>Bias</topic><topic>Confidence interval</topic><topic>Consistent estimators</topic><topic>Distribution</topic><topic>Estimation</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Heavy tails</topic><topic>Linear inference, regression</topic><topic>Log-excesses</topic><topic>Mathematical expressions</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric inference</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Sampling bias</topic><topic>Sciences and techniques of general use</topic><topic>Semiparametric estimation</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Statistics of extremes</topic><topic>Studies</topic><topic>Traffic estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivette Gomes, M</creatorcontrib><creatorcontrib>de Haan, Laurens</creatorcontrib><creatorcontrib>Rodrigues, Lígia Henriques</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivette Gomes, M</au><au>de Haan, Laurens</au><au>Rodrigues, Lígia Henriques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2008-02</date><risdate>2008</risdate><volume>70</volume><issue>1</issue><spage>31</spage><epage>52</epage><pages>31-52</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We are interested in the derivation of the distributional properties of a weighted log-excesses estimator of a positive tail index γ. One of the main objectives of such an estimator is the accommodation of the dominant component of asymptotic bias, together with the maintenance of the asymptotic variance of the maximum likelihood estimator of γ, under a strict Pareto model. We consider the external estimation not only of a second-order shape parameter ρ but also of a second-order scale parameter β. This will enable us to reduce the asymptotic variance of the final estimators under consideration, compared with second-order reduced bias estimators that are already available in the literature. The second-order reduced bias estimators that are considered are also studied for finite samples, through Monte Carlo techniques, as well as applied to real data in the field of finance.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2007.00620.x</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2008-02, Vol.70 (1), p.31-52
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_36838366
source International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; BSC - Ebsco (Business Source Ultimate); Alma/SFX Local Collection
subjects Asymptotic value
Bias
Confidence interval
Consistent estimators
Distribution
Estimation
Estimation bias
Estimators
Exact sciences and technology
General topics
Heavy tails
Linear inference, regression
Log-excesses
Mathematical expressions
Mathematics
Maximum likelihood
Maximum likelihood estimation
Maximum likelihood method
Monte Carlo simulation
Nonparametric inference
Parametric inference
Probability and statistics
Sampling bias
Sciences and techniques of general use
Semiparametric estimation
Statistical methods
Statistical variance
Statistics
Statistics of extremes
Studies
Traffic estimation
title Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tail%20index%20estimation%20for%20heavy-tailed%20models:%20accommodation%20of%20bias%20in%20weighted%20log-excesses&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Ivette%20Gomes,%20M&rft.date=2008-02&rft.volume=70&rft.issue=1&rft.spage=31&rft.epage=52&rft.pages=31-52&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2007.00620.x&rft_dat=%3Cjstor_proqu%3E20203810%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5810-1b2e213536f5ca909d802a405ee3d00ea68044fe6773cb86d349cd93c2cfb5b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200865708&rft_id=info:pmid/&rft_jstor_id=20203810&rfr_iscdi=true