Loading…
Lexicographic probability, conditional probability, and nonstandard probability
The relationship between Popper spaces (conditional probability spaces that satisfy some regularity conditions), lexicographic probability systems (LPS's), and nonstandard probability spaces (NPS's) is considered. If countable additivity is assumed, Popper spaces and a subclass of LPS'...
Saved in:
Published in: | Games and economic behavior 2010, Vol.68 (1), p.155-179 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The relationship between
Popper spaces (conditional probability spaces that satisfy some regularity conditions), lexicographic probability systems (LPS's), and nonstandard probability spaces (NPS's) is considered. If countable additivity is assumed, Popper spaces and a subclass of LPS's are equivalent; without the assumption of countable additivity, the equivalence no longer holds. If the state space is finite, LPS's are equivalent to NPS's. However, if the state space is infinite, NPS's are shown to be more general than LPS's. |
---|---|
ISSN: | 0899-8256 1090-2473 |
DOI: | 10.1016/j.geb.2009.03.013 |