Loading…
Bayesian non-parametric inference for species variety with a two-parameter Poisson-Dirichlet process prior
A Bayesian non-parametric methodology has been recently proposed to deal with the issue of prediction within species sampling problems. Such problems concern the evaluation, conditional on a sample of size n, of the species variety featured by an additional sample of size m. Genomic applications pos...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2009-11, Vol.71 (5), p.993-1008 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Bayesian non-parametric methodology has been recently proposed to deal with the issue of prediction within species sampling problems. Such problems concern the evaluation, conditional on a sample of size n, of the species variety featured by an additional sample of size m. Genomic applications pose the additional challenge of having to deal with large values of both n and m. In such a case the computation of the Bayesian non-parametric estimators is cumbersome and prevents their implementation. We focus on the two-parameter Poisson-Dirichlet model and provide completely explicit expressions for the corresponding estimators, which can be easily evaluated for any sizes of n and m. We also study the asymptotic behaviour of the number of new species conditionally on the observed sample: such an asymptotic result, combined with a suitable simulation scheme, allows us to derive asymptotic highest posterior density intervals for the estimates of interest. Finally, we illustrate the implementation of the proposed methodology by the analysis of five expressed sequence tags data sets. |
---|---|
ISSN: | 1369-7412 1467-9868 |
DOI: | 10.1111/j.1467-9868.2009.00717.x |