Loading…

Random Expected Utility

We develop and analyze a model of random choice and random expected utility. A decision problem is a finite set of lotteries that describe the feasible choices. A random choice rule associates with each decision problem a probability measure over choices. A random utility function is a probability m...

Full description

Saved in:
Bibliographic Details
Published in:Econometrica 2006-01, Vol.74 (1), p.121-146
Main Authors: Gul, Faruk, Pesendorfer, Wolfgang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5221-753d3d19941738f3cecf62a5075874fe954b8bd18a6c7400ed823a25d79fdd3b3
cites cdi_FETCH-LOGICAL-c5221-753d3d19941738f3cecf62a5075874fe954b8bd18a6c7400ed823a25d79fdd3b3
container_end_page 146
container_issue 1
container_start_page 121
container_title Econometrica
container_volume 74
creator Gul, Faruk
Pesendorfer, Wolfgang
description We develop and analyze a model of random choice and random expected utility. A decision problem is a finite set of lotteries that describe the feasible choices. A random choice rule associates with each decision problem a probability measure over choices. A random utility function is a probability measure over von Neumann-Morgenstern utility functions. We show that a random choice rule maximizes some random utility function if and only if it is mixture continuous, monotone (the probability that a lottery is chosen does not increase when other lotteries are added to the decision problem), extreme (lotteries that are not extreme points of the decision problem are chosen with probability 0), and linear (satisfies the independence axiom).
doi_str_mv 10.1111/j.1468-0262.2006.00651.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37730170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3598925</jstor_id><sourcerecordid>3598925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5221-753d3d19941738f3cecf62a5075874fe954b8bd18a6c7400ed823a25d79fdd3b3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKtrNy6KoLsZ85hMkoULqfWFKEhVcHNJkwzMOO3UZIrtvzd1pIIrww25cL5zCAehAcEpieesSkmWywTTnKYU4zyNl5N0uYV6G2Eb9TAmNFG5pLtoL4QKY8zj9NDhk57ZZjoYLefOtM4OntuyLtvVPtopdB3cwc_bR89Xo_HwJrl_vL4dXtwnhlNKEsGZZZYolRHBZMGMM0VONceCS5EVTvFsIieWSJ0bkWHsrKRMU26FKqxlE9ZHp13u3DcfCxdamJbBuLrWM9csAjAhGCYCR_D4D1g1Cz-LfwOKmVSZUipCsoOMb0LwroC5L6far4BgWNcFFaxbgXUrsK4LvuuCZbSe_OTrYHRdeD0zZfj1i0wQksvInXfcZ1m71b_zYTQcX8Qt-o86fxXaxm_8jCupKI9y0sllaN1yI2v_DrlggsPrwzW8Xaq7l-xGwph9AWcRksc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203894999</pqid></control><display><type>article</type><title>Random Expected Utility</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gul, Faruk ; Pesendorfer, Wolfgang</creator><creatorcontrib>Gul, Faruk ; Pesendorfer, Wolfgang</creatorcontrib><description>We develop and analyze a model of random choice and random expected utility. A decision problem is a finite set of lotteries that describe the feasible choices. A random choice rule associates with each decision problem a probability measure over choices. A random utility function is a probability measure over von Neumann-Morgenstern utility functions. We show that a random choice rule maximizes some random utility function if and only if it is mixture continuous, monotone (the probability that a lottery is chosen does not increase when other lotteries are added to the decision problem), extreme (lotteries that are not extreme points of the decision problem are chosen with probability 0), and linear (satisfies the independence axiom).</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.1111/j.1468-0262.2006.00651.x</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishing Ltd</publisher><subject>Algebra ; Applications ; Applied sciences ; Decision making ; Decision theory ; Decision theory. Utility theory ; Determinism ; Economic models ; Economic theory ; Exact sciences and technology ; Expected utility ; Insurance, economics, finance ; Linear transformations ; Lotteries ; Market theory ; Mathematical methods ; Mathematics ; Measurement ; Microeconomics ; Operational research and scientific management ; Operational research. Management science ; Polyhedrons ; Polytopes ; Probability and statistics ; random choice ; Random utility ; Random variables ; Rational expectations ; Sciences and techniques of general use ; Statistics ; Studies ; Utility functions ; Utility models</subject><ispartof>Econometrica, 2006-01, Vol.74 (1), p.121-146</ispartof><rights>Copyright 2006 Econometric Society</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Jan 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5221-753d3d19941738f3cecf62a5075874fe954b8bd18a6c7400ed823a25d79fdd3b3</citedby><cites>FETCH-LOGICAL-c5221-753d3d19941738f3cecf62a5075874fe954b8bd18a6c7400ed823a25d79fdd3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3598925$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3598925$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4022,27921,27922,27923,33221,33222,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17471168$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gul, Faruk</creatorcontrib><creatorcontrib>Pesendorfer, Wolfgang</creatorcontrib><title>Random Expected Utility</title><title>Econometrica</title><description>We develop and analyze a model of random choice and random expected utility. A decision problem is a finite set of lotteries that describe the feasible choices. A random choice rule associates with each decision problem a probability measure over choices. A random utility function is a probability measure over von Neumann-Morgenstern utility functions. We show that a random choice rule maximizes some random utility function if and only if it is mixture continuous, monotone (the probability that a lottery is chosen does not increase when other lotteries are added to the decision problem), extreme (lotteries that are not extreme points of the decision problem are chosen with probability 0), and linear (satisfies the independence axiom).</description><subject>Algebra</subject><subject>Applications</subject><subject>Applied sciences</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Decision theory. Utility theory</subject><subject>Determinism</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Exact sciences and technology</subject><subject>Expected utility</subject><subject>Insurance, economics, finance</subject><subject>Linear transformations</subject><subject>Lotteries</subject><subject>Market theory</subject><subject>Mathematical methods</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Microeconomics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Polyhedrons</subject><subject>Polytopes</subject><subject>Probability and statistics</subject><subject>random choice</subject><subject>Random utility</subject><subject>Random variables</subject><subject>Rational expectations</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Utility functions</subject><subject>Utility models</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkEtLAzEUhYMoWKtrNy6KoLsZ85hMkoULqfWFKEhVcHNJkwzMOO3UZIrtvzd1pIIrww25cL5zCAehAcEpieesSkmWywTTnKYU4zyNl5N0uYV6G2Eb9TAmNFG5pLtoL4QKY8zj9NDhk57ZZjoYLefOtM4OntuyLtvVPtopdB3cwc_bR89Xo_HwJrl_vL4dXtwnhlNKEsGZZZYolRHBZMGMM0VONceCS5EVTvFsIieWSJ0bkWHsrKRMU26FKqxlE9ZHp13u3DcfCxdamJbBuLrWM9csAjAhGCYCR_D4D1g1Cz-LfwOKmVSZUipCsoOMb0LwroC5L6far4BgWNcFFaxbgXUrsK4LvuuCZbSe_OTrYHRdeD0zZfj1i0wQksvInXfcZ1m71b_zYTQcX8Qt-o86fxXaxm_8jCupKI9y0sllaN1yI2v_DrlggsPrwzW8Xaq7l-xGwph9AWcRksc</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Gul, Faruk</creator><creator>Pesendorfer, Wolfgang</creator><general>Blackwell Publishing Ltd</general><general>Econometric Society</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200601</creationdate><title>Random Expected Utility</title><author>Gul, Faruk ; Pesendorfer, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5221-753d3d19941738f3cecf62a5075874fe954b8bd18a6c7400ed823a25d79fdd3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Applications</topic><topic>Applied sciences</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Decision theory. Utility theory</topic><topic>Determinism</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Exact sciences and technology</topic><topic>Expected utility</topic><topic>Insurance, economics, finance</topic><topic>Linear transformations</topic><topic>Lotteries</topic><topic>Market theory</topic><topic>Mathematical methods</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Microeconomics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Polyhedrons</topic><topic>Polytopes</topic><topic>Probability and statistics</topic><topic>random choice</topic><topic>Random utility</topic><topic>Random variables</topic><topic>Rational expectations</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Utility functions</topic><topic>Utility models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gul, Faruk</creatorcontrib><creatorcontrib>Pesendorfer, Wolfgang</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gul, Faruk</au><au>Pesendorfer, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Expected Utility</atitle><jtitle>Econometrica</jtitle><date>2006-01</date><risdate>2006</risdate><volume>74</volume><issue>1</issue><spage>121</spage><epage>146</epage><pages>121-146</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>We develop and analyze a model of random choice and random expected utility. A decision problem is a finite set of lotteries that describe the feasible choices. A random choice rule associates with each decision problem a probability measure over choices. A random utility function is a probability measure over von Neumann-Morgenstern utility functions. We show that a random choice rule maximizes some random utility function if and only if it is mixture continuous, monotone (the probability that a lottery is chosen does not increase when other lotteries are added to the decision problem), extreme (lotteries that are not extreme points of the decision problem are chosen with probability 0), and linear (satisfies the independence axiom).</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1468-0262.2006.00651.x</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 2006-01, Vol.74 (1), p.121-146
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_37730170
source EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects Algebra
Applications
Applied sciences
Decision making
Decision theory
Decision theory. Utility theory
Determinism
Economic models
Economic theory
Exact sciences and technology
Expected utility
Insurance, economics, finance
Linear transformations
Lotteries
Market theory
Mathematical methods
Mathematics
Measurement
Microeconomics
Operational research and scientific management
Operational research. Management science
Polyhedrons
Polytopes
Probability and statistics
random choice
Random utility
Random variables
Rational expectations
Sciences and techniques of general use
Statistics
Studies
Utility functions
Utility models
title Random Expected Utility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Expected%20Utility&rft.jtitle=Econometrica&rft.au=Gul,%20Faruk&rft.date=2006-01&rft.volume=74&rft.issue=1&rft.spage=121&rft.epage=146&rft.pages=121-146&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.1111/j.1468-0262.2006.00651.x&rft_dat=%3Cjstor_proqu%3E3598925%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5221-753d3d19941738f3cecf62a5075874fe954b8bd18a6c7400ed823a25d79fdd3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203894999&rft_id=info:pmid/&rft_jstor_id=3598925&rfr_iscdi=true