Loading…
On quantum statistical inference
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2003-01, Vol.65 (4), p.775-804 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743 |
---|---|
cites | cdi_FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743 |
container_end_page | 804 |
container_issue | 4 |
container_start_page | 775 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 65 |
creator | Barndorff-Nielsen, Ole E. Gill, Richard D. Jupp, Peter E. |
description | Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context. |
doi_str_mv | 10.1111/1467-9868.00415 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37808005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3647584</jstor_id><sourcerecordid>3647584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743</originalsourceid><addsrcrecordid>eNqFUT1PwzAQjRBIlMLMwpAFtrR24q-MgKCACkVtEWyW49oiJU1aOwX677mQqoyc9HyW773Tu3MQnGLUwxB9TBiPUsFEDyGC6V7Q2b3swz1hacQJjg-DI-_nCILxpBOEozJcrVVZrxehr1Wd-zrXqgjz0hpnSm2OgwOrCm9OtrkbvNzeTK_vouFocH99OYw05YJGaYqMSpQmBqsYZzFDDNvMpjNqMkRiojOMLQUGEzzjyloVx2lGsWWczQwnSTe4aPsuXbVaG1_LRe61KQpVmmrtZcIFEghRIPZbonaV985YuXT5QrmNxEg2m5DN3LKZW_5uAhQPrcKZpdE7elaoeeW8z-SnBF8Ujg0gRiiBlAMIYAngnEqBiHyvF9DsfOtTeViUdarUuf_zQGNBAcAjLe8rL8zmP49yPJlctV7PWtnc15XbyRJGOBXNlqK2DP9kvndl5T4kfCfYfH0ayBQ98yl7G8vH5AeBR51P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37808005</pqid></control><display><type>article</type><title>On quantum statistical inference</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Barndorff-Nielsen, Ole E. ; Gill, Richard D. ; Jupp, Peter E.</creator><creatorcontrib>Barndorff-Nielsen, Ole E. ; Gill, Richard D. ; Jupp, Peter E.</creatorcontrib><description>Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/1467-9868.00415</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing</publisher><subject>Eigenvalues ; Exact sciences and technology ; Inference ; Information ; Linear inference, regression ; Mathematical analysis ; Mathematics ; Matrices ; Measurement ; Model testing ; Physics ; Probabilities ; Probability and statistics ; Quantum cuts ; Quantum exponential family ; Quantum information ; Quantum measurements ; Quantum mechanics ; Quantum score ; Quantum statistical models ; Quantum statistics ; Quantum sufficiency ; Quantum transformation model ; Sciences and techniques of general use ; Spin half ; Statistical inferences ; Statistical methods ; Statistical models ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2003-01, Vol.65 (4), p.775-804</ispartof><rights>Copyright 2003 The Royal Statistical Society</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743</citedby><cites>FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3647584$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3647584$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33224,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15285528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a65_3ay_3a2003_3ai_3a4_3ap_3a775-804.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Barndorff-Nielsen, Ole E.</creatorcontrib><creatorcontrib>Gill, Richard D.</creatorcontrib><creatorcontrib>Jupp, Peter E.</creatorcontrib><title>On quantum statistical inference</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context.</description><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Inference</subject><subject>Information</subject><subject>Linear inference, regression</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Measurement</subject><subject>Model testing</subject><subject>Physics</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Quantum cuts</subject><subject>Quantum exponential family</subject><subject>Quantum information</subject><subject>Quantum measurements</subject><subject>Quantum mechanics</subject><subject>Quantum score</subject><subject>Quantum statistical models</subject><subject>Quantum statistics</subject><subject>Quantum sufficiency</subject><subject>Quantum transformation model</subject><subject>Sciences and techniques of general use</subject><subject>Spin half</subject><subject>Statistical inferences</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUT1PwzAQjRBIlMLMwpAFtrR24q-MgKCACkVtEWyW49oiJU1aOwX677mQqoyc9HyW773Tu3MQnGLUwxB9TBiPUsFEDyGC6V7Q2b3swz1hacQJjg-DI-_nCILxpBOEozJcrVVZrxehr1Wd-zrXqgjz0hpnSm2OgwOrCm9OtrkbvNzeTK_vouFocH99OYw05YJGaYqMSpQmBqsYZzFDDNvMpjNqMkRiojOMLQUGEzzjyloVx2lGsWWczQwnSTe4aPsuXbVaG1_LRe61KQpVmmrtZcIFEghRIPZbonaV985YuXT5QrmNxEg2m5DN3LKZW_5uAhQPrcKZpdE7elaoeeW8z-SnBF8Ujg0gRiiBlAMIYAngnEqBiHyvF9DsfOtTeViUdarUuf_zQGNBAcAjLe8rL8zmP49yPJlctV7PWtnc15XbyRJGOBXNlqK2DP9kvndl5T4kfCfYfH0ayBQ98yl7G8vH5AeBR51P</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Barndorff-Nielsen, Ole E.</creator><creator>Gill, Richard D.</creator><creator>Jupp, Peter E.</creator><general>Blackwell Publishing</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20030101</creationdate><title>On quantum statistical inference</title><author>Barndorff-Nielsen, Ole E. ; Gill, Richard D. ; Jupp, Peter E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Inference</topic><topic>Information</topic><topic>Linear inference, regression</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Measurement</topic><topic>Model testing</topic><topic>Physics</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Quantum cuts</topic><topic>Quantum exponential family</topic><topic>Quantum information</topic><topic>Quantum measurements</topic><topic>Quantum mechanics</topic><topic>Quantum score</topic><topic>Quantum statistical models</topic><topic>Quantum statistics</topic><topic>Quantum sufficiency</topic><topic>Quantum transformation model</topic><topic>Sciences and techniques of general use</topic><topic>Spin half</topic><topic>Statistical inferences</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barndorff-Nielsen, Ole E.</creatorcontrib><creatorcontrib>Gill, Richard D.</creatorcontrib><creatorcontrib>Jupp, Peter E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barndorff-Nielsen, Ole E.</au><au>Gill, Richard D.</au><au>Jupp, Peter E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On quantum statistical inference</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>65</volume><issue>4</issue><spage>775</spage><epage>804</epage><pages>775-804</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing</pub><doi>10.1111/1467-9868.00415</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2003-01, Vol.65 (4), p.775-804 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_37808005 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Eigenvalues Exact sciences and technology Inference Information Linear inference, regression Mathematical analysis Mathematics Matrices Measurement Model testing Physics Probabilities Probability and statistics Quantum cuts Quantum exponential family Quantum information Quantum measurements Quantum mechanics Quantum score Quantum statistical models Quantum statistics Quantum sufficiency Quantum transformation model Sciences and techniques of general use Spin half Statistical inferences Statistical methods Statistical models Statistics |
title | On quantum statistical inference |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20quantum%20statistical%20inference&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Barndorff-Nielsen,%20Ole%20E.&rft.date=2003-01-01&rft.volume=65&rft.issue=4&rft.spage=775&rft.epage=804&rft.pages=775-804&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/1467-9868.00415&rft_dat=%3Cjstor_proqu%3E3647584%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=37808005&rft_id=info:pmid/&rft_jstor_id=3647584&rfr_iscdi=true |