Loading…

On quantum statistical inference

Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2003-01, Vol.65 (4), p.775-804
Main Authors: Barndorff-Nielsen, Ole E., Gill, Richard D., Jupp, Peter E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743
cites cdi_FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743
container_end_page 804
container_issue 4
container_start_page 775
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 65
creator Barndorff-Nielsen, Ole E.
Gill, Richard D.
Jupp, Peter E.
description Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context.
doi_str_mv 10.1111/1467-9868.00415
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37808005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3647584</jstor_id><sourcerecordid>3647584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743</originalsourceid><addsrcrecordid>eNqFUT1PwzAQjRBIlMLMwpAFtrR24q-MgKCACkVtEWyW49oiJU1aOwX677mQqoyc9HyW773Tu3MQnGLUwxB9TBiPUsFEDyGC6V7Q2b3swz1hacQJjg-DI-_nCILxpBOEozJcrVVZrxehr1Wd-zrXqgjz0hpnSm2OgwOrCm9OtrkbvNzeTK_vouFocH99OYw05YJGaYqMSpQmBqsYZzFDDNvMpjNqMkRiojOMLQUGEzzjyloVx2lGsWWczQwnSTe4aPsuXbVaG1_LRe61KQpVmmrtZcIFEghRIPZbonaV985YuXT5QrmNxEg2m5DN3LKZW_5uAhQPrcKZpdE7elaoeeW8z-SnBF8Ujg0gRiiBlAMIYAngnEqBiHyvF9DsfOtTeViUdarUuf_zQGNBAcAjLe8rL8zmP49yPJlctV7PWtnc15XbyRJGOBXNlqK2DP9kvndl5T4kfCfYfH0ayBQ98yl7G8vH5AeBR51P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37808005</pqid></control><display><type>article</type><title>On quantum statistical inference</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Barndorff-Nielsen, Ole E. ; Gill, Richard D. ; Jupp, Peter E.</creator><creatorcontrib>Barndorff-Nielsen, Ole E. ; Gill, Richard D. ; Jupp, Peter E.</creatorcontrib><description>Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/1467-9868.00415</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing</publisher><subject>Eigenvalues ; Exact sciences and technology ; Inference ; Information ; Linear inference, regression ; Mathematical analysis ; Mathematics ; Matrices ; Measurement ; Model testing ; Physics ; Probabilities ; Probability and statistics ; Quantum cuts ; Quantum exponential family ; Quantum information ; Quantum measurements ; Quantum mechanics ; Quantum score ; Quantum statistical models ; Quantum statistics ; Quantum sufficiency ; Quantum transformation model ; Sciences and techniques of general use ; Spin half ; Statistical inferences ; Statistical methods ; Statistical models ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2003-01, Vol.65 (4), p.775-804</ispartof><rights>Copyright 2003 The Royal Statistical Society</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743</citedby><cites>FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3647584$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3647584$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33224,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15285528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a65_3ay_3a2003_3ai_3a4_3ap_3a775-804.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Barndorff-Nielsen, Ole E.</creatorcontrib><creatorcontrib>Gill, Richard D.</creatorcontrib><creatorcontrib>Jupp, Peter E.</creatorcontrib><title>On quantum statistical inference</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context.</description><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Inference</subject><subject>Information</subject><subject>Linear inference, regression</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Measurement</subject><subject>Model testing</subject><subject>Physics</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Quantum cuts</subject><subject>Quantum exponential family</subject><subject>Quantum information</subject><subject>Quantum measurements</subject><subject>Quantum mechanics</subject><subject>Quantum score</subject><subject>Quantum statistical models</subject><subject>Quantum statistics</subject><subject>Quantum sufficiency</subject><subject>Quantum transformation model</subject><subject>Sciences and techniques of general use</subject><subject>Spin half</subject><subject>Statistical inferences</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUT1PwzAQjRBIlMLMwpAFtrR24q-MgKCACkVtEWyW49oiJU1aOwX677mQqoyc9HyW773Tu3MQnGLUwxB9TBiPUsFEDyGC6V7Q2b3swz1hacQJjg-DI-_nCILxpBOEozJcrVVZrxehr1Wd-zrXqgjz0hpnSm2OgwOrCm9OtrkbvNzeTK_vouFocH99OYw05YJGaYqMSpQmBqsYZzFDDNvMpjNqMkRiojOMLQUGEzzjyloVx2lGsWWczQwnSTe4aPsuXbVaG1_LRe61KQpVmmrtZcIFEghRIPZbonaV985YuXT5QrmNxEg2m5DN3LKZW_5uAhQPrcKZpdE7elaoeeW8z-SnBF8Ujg0gRiiBlAMIYAngnEqBiHyvF9DsfOtTeViUdarUuf_zQGNBAcAjLe8rL8zmP49yPJlctV7PWtnc15XbyRJGOBXNlqK2DP9kvndl5T4kfCfYfH0ayBQ98yl7G8vH5AeBR51P</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Barndorff-Nielsen, Ole E.</creator><creator>Gill, Richard D.</creator><creator>Jupp, Peter E.</creator><general>Blackwell Publishing</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20030101</creationdate><title>On quantum statistical inference</title><author>Barndorff-Nielsen, Ole E. ; Gill, Richard D. ; Jupp, Peter E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Inference</topic><topic>Information</topic><topic>Linear inference, regression</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Measurement</topic><topic>Model testing</topic><topic>Physics</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Quantum cuts</topic><topic>Quantum exponential family</topic><topic>Quantum information</topic><topic>Quantum measurements</topic><topic>Quantum mechanics</topic><topic>Quantum score</topic><topic>Quantum statistical models</topic><topic>Quantum statistics</topic><topic>Quantum sufficiency</topic><topic>Quantum transformation model</topic><topic>Sciences and techniques of general use</topic><topic>Spin half</topic><topic>Statistical inferences</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barndorff-Nielsen, Ole E.</creatorcontrib><creatorcontrib>Gill, Richard D.</creatorcontrib><creatorcontrib>Jupp, Peter E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barndorff-Nielsen, Ole E.</au><au>Gill, Richard D.</au><au>Jupp, Peter E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On quantum statistical inference</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>65</volume><issue>4</issue><spage>775</spage><epage>804</epage><pages>775-804</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and interrelates some new concepts for an extension of classical statistical inference to the quantum context.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing</pub><doi>10.1111/1467-9868.00415</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2003-01, Vol.65 (4), p.775-804
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_37808005
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Eigenvalues
Exact sciences and technology
Inference
Information
Linear inference, regression
Mathematical analysis
Mathematics
Matrices
Measurement
Model testing
Physics
Probabilities
Probability and statistics
Quantum cuts
Quantum exponential family
Quantum information
Quantum measurements
Quantum mechanics
Quantum score
Quantum statistical models
Quantum statistics
Quantum sufficiency
Quantum transformation model
Sciences and techniques of general use
Spin half
Statistical inferences
Statistical methods
Statistical models
Statistics
title On quantum statistical inference
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20quantum%20statistical%20inference&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Barndorff-Nielsen,%20Ole%20E.&rft.date=2003-01-01&rft.volume=65&rft.issue=4&rft.spage=775&rft.epage=804&rft.pages=775-804&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/1467-9868.00415&rft_dat=%3Cjstor_proqu%3E3647584%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5785-990ea3ac4e1a21b26061fbf9d5eb0424cb11f5a3a687b7affa229b51f676de743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=37808005&rft_id=info:pmid/&rft_jstor_id=3647584&rfr_iscdi=true