Loading…

Bootstrapping nonparametric estimators of the volatility function

We prove that the bootstrap works in a quite general sense for nonparametric estimators of the trend and volatility functions in nonlinear AR-ARCH-models. We illustrate the implications of this result by constructing uniform confidence bands for those functions based on localized nonparametric funct...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2004, Vol.118 (1), p.189-218
Main Authors: Franke, Jürgen, Neumann, Michael H., Stockis, Jean-Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-4479532f77ccaca40ae5b4c66ff78b45edcf87803d9c95efe380039319fc756a3
cites cdi_FETCH-LOGICAL-c549t-4479532f77ccaca40ae5b4c66ff78b45edcf87803d9c95efe380039319fc756a3
container_end_page 218
container_issue 1
container_start_page 189
container_title Journal of econometrics
container_volume 118
creator Franke, Jürgen
Neumann, Michael H.
Stockis, Jean-Pierre
description We prove that the bootstrap works in a quite general sense for nonparametric estimators of the trend and volatility functions in nonlinear AR-ARCH-models. We illustrate the implications of this result by constructing uniform confidence bands for those functions based on localized nonparametric function estimates. As an application, we study the trend and volatility of a time series of high frequency foreign exchange rate returns.
doi_str_mv 10.1016/S0304-4076(03)00140-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37818553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407603001404</els_id><sourcerecordid>457088161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-4479532f77ccaca40ae5b4c66ff78b45edcf87803d9c95efe380039319fc756a3</originalsourceid><addsrcrecordid>eNqFkEuLFDEUhYMo2Lb-BKFwIboovam8VzIOvmDEhboOmfSNk6EqKZN0Q_9709MyCzcGchPCdw4nh5DnFN5QoPLtd2DARw5KvgL2GoByGPkDsqFaTaPURjwkm3vkMXlS6y0ACK7Zhly8z7nVVty6xvRrSDmtrrgFW4l-wNri4loudchhaDc4HPLsWpxjOw5hn3yLOT0lj4KbKz77e27Jz48fflx-Hq--ffpyeXE1esFNGzlXRrApKOW9846DQ3HNvZQhKH3NBe580EoD2xlvBAZkGoAZRk3wSkjHtuTl2Xct-fe-R7NLrB7n2SXM-2qZ0lQLwTr44h_wNu9L6tksNVJKMJ3aEnGGfMm1Fgx2Lf2v5Wgp2FOr9q5Ve6rMArN3rVredV_PuoIr-nsR9uVzyos9WOYo1X0e-56gezAXT4926nM93bSxU0du2tL93p39sFd3iFhs9RGTx10s6Jvd5fifRH8AJHKZBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196660955</pqid></control><display><type>article</type><title>Bootstrapping nonparametric estimators of the volatility function</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Franke, Jürgen ; Neumann, Michael H. ; Stockis, Jean-Pierre</creator><creatorcontrib>Franke, Jürgen ; Neumann, Michael H. ; Stockis, Jean-Pierre</creatorcontrib><description>We prove that the bootstrap works in a quite general sense for nonparametric estimators of the trend and volatility functions in nonlinear AR-ARCH-models. We illustrate the implications of this result by constructing uniform confidence bands for those functions based on localized nonparametric function estimates. As an application, we study the trend and volatility of a time series of high frequency foreign exchange rate returns.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/S0304-4076(03)00140-4</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ARCH process ; Bootstrap ; Confidence band ; Econometric models ; Econometrics ; Economic methodology ; Economic models ; Economic theory ; Estimation ; Mathematical economics ; Nonparametric estimates ; Rates of return ; Studies ; Time series ; Volatility</subject><ispartof>Journal of econometrics, 2004, Vol.118 (1), p.189-218</ispartof><rights>2003 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan/Feb 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-4479532f77ccaca40ae5b4c66ff78b45edcf87803d9c95efe380039319fc756a3</citedby><cites>FETCH-LOGICAL-c549t-4479532f77ccaca40ae5b4c66ff78b45edcf87803d9c95efe380039319fc756a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407603001404$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,4024,27923,27924,27925,33223,33224,45992,46003</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a118_3ay_3a2004_3ai_3a1-2_3ap_3a189-218.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Franke, Jürgen</creatorcontrib><creatorcontrib>Neumann, Michael H.</creatorcontrib><creatorcontrib>Stockis, Jean-Pierre</creatorcontrib><title>Bootstrapping nonparametric estimators of the volatility function</title><title>Journal of econometrics</title><description>We prove that the bootstrap works in a quite general sense for nonparametric estimators of the trend and volatility functions in nonlinear AR-ARCH-models. We illustrate the implications of this result by constructing uniform confidence bands for those functions based on localized nonparametric function estimates. As an application, we study the trend and volatility of a time series of high frequency foreign exchange rate returns.</description><subject>ARCH process</subject><subject>Bootstrap</subject><subject>Confidence band</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic methodology</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Estimation</subject><subject>Mathematical economics</subject><subject>Nonparametric estimates</subject><subject>Rates of return</subject><subject>Studies</subject><subject>Time series</subject><subject>Volatility</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkEuLFDEUhYMo2Lb-BKFwIboovam8VzIOvmDEhboOmfSNk6EqKZN0Q_9709MyCzcGchPCdw4nh5DnFN5QoPLtd2DARw5KvgL2GoByGPkDsqFaTaPURjwkm3vkMXlS6y0ACK7Zhly8z7nVVty6xvRrSDmtrrgFW4l-wNri4loudchhaDc4HPLsWpxjOw5hn3yLOT0lj4KbKz77e27Jz48fflx-Hq--ffpyeXE1esFNGzlXRrApKOW9846DQ3HNvZQhKH3NBe580EoD2xlvBAZkGoAZRk3wSkjHtuTl2Xct-fe-R7NLrB7n2SXM-2qZ0lQLwTr44h_wNu9L6tksNVJKMJ3aEnGGfMm1Fgx2Lf2v5Wgp2FOr9q5Ve6rMArN3rVredV_PuoIr-nsR9uVzyos9WOYo1X0e-56gezAXT4926nM93bSxU0du2tL93p39sFd3iFhs9RGTx10s6Jvd5fifRH8AJHKZBQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Franke, Jürgen</creator><creator>Neumann, Michael H.</creator><creator>Stockis, Jean-Pierre</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2004</creationdate><title>Bootstrapping nonparametric estimators of the volatility function</title><author>Franke, Jürgen ; Neumann, Michael H. ; Stockis, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-4479532f77ccaca40ae5b4c66ff78b45edcf87803d9c95efe380039319fc756a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ARCH process</topic><topic>Bootstrap</topic><topic>Confidence band</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic methodology</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Estimation</topic><topic>Mathematical economics</topic><topic>Nonparametric estimates</topic><topic>Rates of return</topic><topic>Studies</topic><topic>Time series</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franke, Jürgen</creatorcontrib><creatorcontrib>Neumann, Michael H.</creatorcontrib><creatorcontrib>Stockis, Jean-Pierre</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, Jürgen</au><au>Neumann, Michael H.</au><au>Stockis, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrapping nonparametric estimators of the volatility function</atitle><jtitle>Journal of econometrics</jtitle><date>2004</date><risdate>2004</risdate><volume>118</volume><issue>1</issue><spage>189</spage><epage>218</epage><pages>189-218</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>We prove that the bootstrap works in a quite general sense for nonparametric estimators of the trend and volatility functions in nonlinear AR-ARCH-models. We illustrate the implications of this result by constructing uniform confidence bands for those functions based on localized nonparametric function estimates. As an application, we study the trend and volatility of a time series of high frequency foreign exchange rate returns.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4076(03)00140-4</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2004, Vol.118 (1), p.189-218
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_37818553
source International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects ARCH process
Bootstrap
Confidence band
Econometric models
Econometrics
Economic methodology
Economic models
Economic theory
Estimation
Mathematical economics
Nonparametric estimates
Rates of return
Studies
Time series
Volatility
title Bootstrapping nonparametric estimators of the volatility function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrapping%20nonparametric%20estimators%20of%20the%20volatility%20function&rft.jtitle=Journal%20of%20econometrics&rft.au=Franke,%20J%C3%BCrgen&rft.date=2004&rft.volume=118&rft.issue=1&rft.spage=189&rft.epage=218&rft.pages=189-218&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/S0304-4076(03)00140-4&rft_dat=%3Cproquest_cross%3E457088161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-4479532f77ccaca40ae5b4c66ff78b45edcf87803d9c95efe380039319fc756a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196660955&rft_id=info:pmid/&rfr_iscdi=true