Loading…
Using an artificial neural network trained with a genetic algorithm to model brand share
We introduce a new architectural approach to artificial neural network (ANN) choice modeling. The standard ANN design with a polychotomous situation requires an output variable for each alternative. We reconfigure our feedforward network to contain only one output node for a six-level choice problem...
Saved in:
Published in: | Journal of business research 2004, Vol.57 (1), p.79-85 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a new architectural approach to artificial neural network (ANN) choice modeling. The standard ANN design with a polychotomous situation requires an output variable for each alternative. We reconfigure our feedforward network to contain only one output node for a six-level choice problem and network performance improves considerably. We conclude that a simpler ANN architecture leads to better generalization in the case of multilevel choice. We then use a feedforward ANN trained with a genetic algorithm to model individual consumer choices and brand share in a retail coffee market. A well-known choice model is replicated while the computer-processing technique is altered from multinomial logit (MNL) to feedforward ANNs trained with the standard backpropagation algorithm and a genetic algorithm. The ANN trained with our genetic algorithm outperforms both MNL and the backpropagation trained ANN. |
---|---|
ISSN: | 0148-2963 1873-7978 |
DOI: | 10.1016/S0148-2963(02)00287-4 |