Loading…
Confidence Intervals for Partially Identified Parameters
Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidenc...
Saved in:
Published in: | Econometrica 2004-11, Vol.72 (6), p.1845-1857 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3 |
container_end_page | 1857 |
container_issue | 6 |
container_start_page | 1845 |
container_title | Econometrica |
container_volume | 72 |
creator | Imbens, Guido W. Manski, Charles F. |
description | Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidence intervals (CIs) have been proposed that cover the entire identification region with fixed probability. Here, we introduce a conceptually different type of confidence interval. Rather than cover the entire identification region with fixed probability, we propose CIs that asymptotically cover the true value of the parameter with this probability. However, the exact coverage probabilities of the simplest version of our new CIs do not converge to their nominal values uniformly across different values for the width of the identification region. To avoid the problems associated with this, we modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal values. We motivate this modified CI through exact results for the Gaussian case. |
doi_str_mv | 10.1111/j.1468-0262.2004.00555.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37985528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3598769</jstor_id><sourcerecordid>3598769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3</originalsourceid><addsrcrecordid>eNqNkEtr3DAUhUVpodNp_kEWJpDu7OrhK0uLLMKQpAMhaUMekM1F8Uggx2Onkqed-feV6zCBriokrtD5zkEcQjJGC5bW16ZgpVQ55ZIXnNKyoBQAiu07MtsL78mMUsZzLRX_SD7F2NBEpT0jatF3zq9sV9ts2Q02_DJtzFwfsu8mDN607S5bJnnwztvV-GjWNmHxM_ngEmoPXuec3J2f3S6-5ZfXF8vF6WVeSyEh51bwCnSpxGplOABljsqa6brkwKB6okJaQcFyCYxJBYprXWpXurJyT8ZYMSdfptyX0P_c2Djg2sfatq3pbL-JKCqtALhK4NE_YNNvQpf-hpwKpTkokSA1QXXoYwzW4UvwaxN2yCiOfWKDY2041oZjn_i3T9wm6_Frvom1aV0wXe3jm19yLiCdOTmZuN--tbv_zsezxe1puiX_4eRv4tCHvV-AVpXUSc4n2cfBbveyCc8oK1EBPlxdoLq6r37c3Ch8FH8AeYmeZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203892583</pqid></control><display><type>article</type><title>Confidence Intervals for Partially Identified Parameters</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><source>EBSCO_EconLit with Full Text(美国经济学会全文数据库)</source><creator>Imbens, Guido W. ; Manski, Charles F.</creator><creatorcontrib>Imbens, Guido W. ; Manski, Charles F.</creatorcontrib><description>Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidence intervals (CIs) have been proposed that cover the entire identification region with fixed probability. Here, we introduce a conceptually different type of confidence interval. Rather than cover the entire identification region with fixed probability, we propose CIs that asymptotically cover the true value of the parameter with this probability. However, the exact coverage probabilities of the simplest version of our new CIs do not converge to their nominal values uniformly across different values for the width of the identification region. To avoid the problems associated with this, we modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal values. We motivate this modified CI through exact results for the Gaussian case.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.1111/j.1468-0262.2004.00555.x</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishing Ltd</publisher><subject>Applications ; Approximation ; Bounds ; Case studies ; Confidence interval ; Confidence intervals ; Consistent estimators ; Convergence ; Econometrics ; Economic theory ; Estimation ; Estimators ; Exact sciences and technology ; identification regions ; Inference ; Insurance, economics, finance ; Interval estimators ; Mathematics ; Missing data ; Nonparametric inference ; Notes and Comments ; Observational research ; Parameter identification ; Parametric inference ; Probability ; Probability and statistics ; Random variables ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Studies ; uniform convergence</subject><ispartof>Econometrica, 2004-11, Vol.72 (6), p.1845-1857</ispartof><rights>Copyright 2004 Econometric Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Econometric Society Nov 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3</citedby><cites>FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3598769$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3598769$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,33224,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16223522$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Imbens, Guido W.</creatorcontrib><creatorcontrib>Manski, Charles F.</creatorcontrib><title>Confidence Intervals for Partially Identified Parameters</title><title>Econometrica</title><description>Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidence intervals (CIs) have been proposed that cover the entire identification region with fixed probability. Here, we introduce a conceptually different type of confidence interval. Rather than cover the entire identification region with fixed probability, we propose CIs that asymptotically cover the true value of the parameter with this probability. However, the exact coverage probabilities of the simplest version of our new CIs do not converge to their nominal values uniformly across different values for the width of the identification region. To avoid the problems associated with this, we modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal values. We motivate this modified CI through exact results for the Gaussian case.</description><subject>Applications</subject><subject>Approximation</subject><subject>Bounds</subject><subject>Case studies</subject><subject>Confidence interval</subject><subject>Confidence intervals</subject><subject>Consistent estimators</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>identification regions</subject><subject>Inference</subject><subject>Insurance, economics, finance</subject><subject>Interval estimators</subject><subject>Mathematics</subject><subject>Missing data</subject><subject>Nonparametric inference</subject><subject>Notes and Comments</subject><subject>Observational research</subject><subject>Parameter identification</subject><subject>Parametric inference</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>uniform convergence</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkEtr3DAUhUVpodNp_kEWJpDu7OrhK0uLLMKQpAMhaUMekM1F8Uggx2Onkqed-feV6zCBriokrtD5zkEcQjJGC5bW16ZgpVQ55ZIXnNKyoBQAiu07MtsL78mMUsZzLRX_SD7F2NBEpT0jatF3zq9sV9ts2Q02_DJtzFwfsu8mDN607S5bJnnwztvV-GjWNmHxM_ngEmoPXuec3J2f3S6-5ZfXF8vF6WVeSyEh51bwCnSpxGplOABljsqa6brkwKB6okJaQcFyCYxJBYprXWpXurJyT8ZYMSdfptyX0P_c2Djg2sfatq3pbL-JKCqtALhK4NE_YNNvQpf-hpwKpTkokSA1QXXoYwzW4UvwaxN2yCiOfWKDY2041oZjn_i3T9wm6_Frvom1aV0wXe3jm19yLiCdOTmZuN--tbv_zsezxe1puiX_4eRv4tCHvV-AVpXUSc4n2cfBbveyCc8oK1EBPlxdoLq6r37c3Ch8FH8AeYmeZQ</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Imbens, Guido W.</creator><creator>Manski, Charles F.</creator><general>Blackwell Publishing Ltd</general><general>Econometric Society</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200411</creationdate><title>Confidence Intervals for Partially Identified Parameters</title><author>Imbens, Guido W. ; Manski, Charles F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Bounds</topic><topic>Case studies</topic><topic>Confidence interval</topic><topic>Confidence intervals</topic><topic>Consistent estimators</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>identification regions</topic><topic>Inference</topic><topic>Insurance, economics, finance</topic><topic>Interval estimators</topic><topic>Mathematics</topic><topic>Missing data</topic><topic>Nonparametric inference</topic><topic>Notes and Comments</topic><topic>Observational research</topic><topic>Parameter identification</topic><topic>Parametric inference</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>uniform convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imbens, Guido W.</creatorcontrib><creatorcontrib>Manski, Charles F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imbens, Guido W.</au><au>Manski, Charles F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence Intervals for Partially Identified Parameters</atitle><jtitle>Econometrica</jtitle><date>2004-11</date><risdate>2004</risdate><volume>72</volume><issue>6</issue><spage>1845</spage><epage>1857</epage><pages>1845-1857</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidence intervals (CIs) have been proposed that cover the entire identification region with fixed probability. Here, we introduce a conceptually different type of confidence interval. Rather than cover the entire identification region with fixed probability, we propose CIs that asymptotically cover the true value of the parameter with this probability. However, the exact coverage probabilities of the simplest version of our new CIs do not converge to their nominal values uniformly across different values for the width of the identification region. To avoid the problems associated with this, we modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal values. We motivate this modified CI through exact results for the Gaussian case.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1468-0262.2004.00555.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 2004-11, Vol.72 (6), p.1845-1857 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_miscellaneous_37985528 |
source | International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection; EBSCO_EconLit with Full Text(美国经济学会全文数据库) |
subjects | Applications Approximation Bounds Case studies Confidence interval Confidence intervals Consistent estimators Convergence Econometrics Economic theory Estimation Estimators Exact sciences and technology identification regions Inference Insurance, economics, finance Interval estimators Mathematics Missing data Nonparametric inference Notes and Comments Observational research Parameter identification Parametric inference Probability Probability and statistics Random variables Sciences and techniques of general use Statistical variance Statistics Studies uniform convergence |
title | Confidence Intervals for Partially Identified Parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20Intervals%20for%20Partially%20Identified%20Parameters&rft.jtitle=Econometrica&rft.au=Imbens,%20Guido%20W.&rft.date=2004-11&rft.volume=72&rft.issue=6&rft.spage=1845&rft.epage=1857&rft.pages=1845-1857&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.1111/j.1468-0262.2004.00555.x&rft_dat=%3Cjstor_proqu%3E3598769%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203892583&rft_id=info:pmid/&rft_jstor_id=3598769&rfr_iscdi=true |