Loading…

Confidence Intervals for Partially Identified Parameters

Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidenc...

Full description

Saved in:
Bibliographic Details
Published in:Econometrica 2004-11, Vol.72 (6), p.1845-1857
Main Authors: Imbens, Guido W., Manski, Charles F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3
cites cdi_FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3
container_end_page 1857
container_issue 6
container_start_page 1845
container_title Econometrica
container_volume 72
creator Imbens, Guido W.
Manski, Charles F.
description Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidence intervals (CIs) have been proposed that cover the entire identification region with fixed probability. Here, we introduce a conceptually different type of confidence interval. Rather than cover the entire identification region with fixed probability, we propose CIs that asymptotically cover the true value of the parameter with this probability. However, the exact coverage probabilities of the simplest version of our new CIs do not converge to their nominal values uniformly across different values for the width of the identification region. To avoid the problems associated with this, we modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal values. We motivate this modified CI through exact results for the Gaussian case.
doi_str_mv 10.1111/j.1468-0262.2004.00555.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_37985528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3598769</jstor_id><sourcerecordid>3598769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3</originalsourceid><addsrcrecordid>eNqNkEtr3DAUhUVpodNp_kEWJpDu7OrhK0uLLMKQpAMhaUMekM1F8Uggx2Onkqed-feV6zCBriokrtD5zkEcQjJGC5bW16ZgpVQ55ZIXnNKyoBQAiu07MtsL78mMUsZzLRX_SD7F2NBEpT0jatF3zq9sV9ts2Q02_DJtzFwfsu8mDN607S5bJnnwztvV-GjWNmHxM_ngEmoPXuec3J2f3S6-5ZfXF8vF6WVeSyEh51bwCnSpxGplOABljsqa6brkwKB6okJaQcFyCYxJBYprXWpXurJyT8ZYMSdfptyX0P_c2Djg2sfatq3pbL-JKCqtALhK4NE_YNNvQpf-hpwKpTkokSA1QXXoYwzW4UvwaxN2yCiOfWKDY2041oZjn_i3T9wm6_Frvom1aV0wXe3jm19yLiCdOTmZuN--tbv_zsezxe1puiX_4eRv4tCHvV-AVpXUSc4n2cfBbveyCc8oK1EBPlxdoLq6r37c3Ch8FH8AeYmeZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203892583</pqid></control><display><type>article</type><title>Confidence Intervals for Partially Identified Parameters</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>EBSCO_EconLit with Full Text(美国经济学会全文数据库)</source><creator>Imbens, Guido W. ; Manski, Charles F.</creator><creatorcontrib>Imbens, Guido W. ; Manski, Charles F.</creatorcontrib><description>Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidence intervals (CIs) have been proposed that cover the entire identification region with fixed probability. Here, we introduce a conceptually different type of confidence interval. Rather than cover the entire identification region with fixed probability, we propose CIs that asymptotically cover the true value of the parameter with this probability. However, the exact coverage probabilities of the simplest version of our new CIs do not converge to their nominal values uniformly across different values for the width of the identification region. To avoid the problems associated with this, we modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal values. We motivate this modified CI through exact results for the Gaussian case.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.1111/j.1468-0262.2004.00555.x</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishing Ltd</publisher><subject>Applications ; Approximation ; Bounds ; Case studies ; Confidence interval ; Confidence intervals ; Consistent estimators ; Convergence ; Econometrics ; Economic theory ; Estimation ; Estimators ; Exact sciences and technology ; identification regions ; Inference ; Insurance, economics, finance ; Interval estimators ; Mathematics ; Missing data ; Nonparametric inference ; Notes and Comments ; Observational research ; Parameter identification ; Parametric inference ; Probability ; Probability and statistics ; Random variables ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Studies ; uniform convergence</subject><ispartof>Econometrica, 2004-11, Vol.72 (6), p.1845-1857</ispartof><rights>Copyright 2004 Econometric Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Econometric Society Nov 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3</citedby><cites>FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3598769$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3598769$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,33224,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16223522$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Imbens, Guido W.</creatorcontrib><creatorcontrib>Manski, Charles F.</creatorcontrib><title>Confidence Intervals for Partially Identified Parameters</title><title>Econometrica</title><description>Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidence intervals (CIs) have been proposed that cover the entire identification region with fixed probability. Here, we introduce a conceptually different type of confidence interval. Rather than cover the entire identification region with fixed probability, we propose CIs that asymptotically cover the true value of the parameter with this probability. However, the exact coverage probabilities of the simplest version of our new CIs do not converge to their nominal values uniformly across different values for the width of the identification region. To avoid the problems associated with this, we modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal values. We motivate this modified CI through exact results for the Gaussian case.</description><subject>Applications</subject><subject>Approximation</subject><subject>Bounds</subject><subject>Case studies</subject><subject>Confidence interval</subject><subject>Confidence intervals</subject><subject>Consistent estimators</subject><subject>Convergence</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>identification regions</subject><subject>Inference</subject><subject>Insurance, economics, finance</subject><subject>Interval estimators</subject><subject>Mathematics</subject><subject>Missing data</subject><subject>Nonparametric inference</subject><subject>Notes and Comments</subject><subject>Observational research</subject><subject>Parameter identification</subject><subject>Parametric inference</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Studies</subject><subject>uniform convergence</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkEtr3DAUhUVpodNp_kEWJpDu7OrhK0uLLMKQpAMhaUMekM1F8Uggx2Onkqed-feV6zCBriokrtD5zkEcQjJGC5bW16ZgpVQ55ZIXnNKyoBQAiu07MtsL78mMUsZzLRX_SD7F2NBEpT0jatF3zq9sV9ts2Q02_DJtzFwfsu8mDN607S5bJnnwztvV-GjWNmHxM_ngEmoPXuec3J2f3S6-5ZfXF8vF6WVeSyEh51bwCnSpxGplOABljsqa6brkwKB6okJaQcFyCYxJBYprXWpXurJyT8ZYMSdfptyX0P_c2Djg2sfatq3pbL-JKCqtALhK4NE_YNNvQpf-hpwKpTkokSA1QXXoYwzW4UvwaxN2yCiOfWKDY2041oZjn_i3T9wm6_Frvom1aV0wXe3jm19yLiCdOTmZuN--tbv_zsezxe1puiX_4eRv4tCHvV-AVpXUSc4n2cfBbveyCc8oK1EBPlxdoLq6r37c3Ch8FH8AeYmeZQ</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Imbens, Guido W.</creator><creator>Manski, Charles F.</creator><general>Blackwell Publishing Ltd</general><general>Econometric Society</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200411</creationdate><title>Confidence Intervals for Partially Identified Parameters</title><author>Imbens, Guido W. ; Manski, Charles F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Bounds</topic><topic>Case studies</topic><topic>Confidence interval</topic><topic>Confidence intervals</topic><topic>Consistent estimators</topic><topic>Convergence</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>identification regions</topic><topic>Inference</topic><topic>Insurance, economics, finance</topic><topic>Interval estimators</topic><topic>Mathematics</topic><topic>Missing data</topic><topic>Nonparametric inference</topic><topic>Notes and Comments</topic><topic>Observational research</topic><topic>Parameter identification</topic><topic>Parametric inference</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Studies</topic><topic>uniform convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imbens, Guido W.</creatorcontrib><creatorcontrib>Manski, Charles F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imbens, Guido W.</au><au>Manski, Charles F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence Intervals for Partially Identified Parameters</atitle><jtitle>Econometrica</jtitle><date>2004-11</date><risdate>2004</risdate><volume>72</volume><issue>6</issue><spage>1845</spage><epage>1857</epage><pages>1845-1857</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>Recently a growing body of research has studied inference in settings where parameters of interest are partially identified. In many cases the parameter is real-valued and the identification region is an interval whose lower and upper bounds may be estimated from sample data. For this case confidence intervals (CIs) have been proposed that cover the entire identification region with fixed probability. Here, we introduce a conceptually different type of confidence interval. Rather than cover the entire identification region with fixed probability, we propose CIs that asymptotically cover the true value of the parameter with this probability. However, the exact coverage probabilities of the simplest version of our new CIs do not converge to their nominal values uniformly across different values for the width of the identification region. To avoid the problems associated with this, we modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal values. We motivate this modified CI through exact results for the Gaussian case.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1468-0262.2004.00555.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 2004-11, Vol.72 (6), p.1845-1857
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_37985528
source International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection; EBSCO_EconLit with Full Text(美国经济学会全文数据库)
subjects Applications
Approximation
Bounds
Case studies
Confidence interval
Confidence intervals
Consistent estimators
Convergence
Econometrics
Economic theory
Estimation
Estimators
Exact sciences and technology
identification regions
Inference
Insurance, economics, finance
Interval estimators
Mathematics
Missing data
Nonparametric inference
Notes and Comments
Observational research
Parameter identification
Parametric inference
Probability
Probability and statistics
Random variables
Sciences and techniques of general use
Statistical variance
Statistics
Studies
uniform convergence
title Confidence Intervals for Partially Identified Parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20Intervals%20for%20Partially%20Identified%20Parameters&rft.jtitle=Econometrica&rft.au=Imbens,%20Guido%20W.&rft.date=2004-11&rft.volume=72&rft.issue=6&rft.spage=1845&rft.epage=1857&rft.pages=1845-1857&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.1111/j.1468-0262.2004.00555.x&rft_dat=%3Cjstor_proqu%3E3598769%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6365-2e32759483dda25501f06c19c425157b036e305e26511685829949f4f47fbaae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203892583&rft_id=info:pmid/&rft_jstor_id=3598769&rfr_iscdi=true