Loading…
Dynamic interactive epistemology
The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive rea...
Saved in:
Published in: | Games and economic behavior 2004-10, Vol.49 (1), p.49-80 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523 |
container_end_page | 80 |
container_issue | 1 |
container_start_page | 49 |
container_title | Games and economic behavior |
container_volume | 49 |
creator | Board, Oliver |
description | The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive reasoning have been developed, most notably by Stalnaker [Econ. Philos. 12 (1996) 133–163] and Battigalli and Siniscalchi [J. Econ. Theory 88 (1999) 188–230], and used to analyze rational play in extensive form games. But while the properties of Aumann structures are well understood, without a formal language in which belief and belief revision statements can be expressed, it is unclear exactly what are the properties of these dynamic models. Here we investigate this question by defining such a language. A semantics and syntax are presented, with soundness and completeness theorems linking the two. |
doi_str_mv | 10.1016/j.geb.2003.10.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37999658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899825603002653</els_id><sourcerecordid>37999658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF1x4W7qzXMmuJL6qFBwo-uQSe_UlM7DZFqYf2_KiAsXLk4uSc45XD5CrinMKVB1t51vsJwzAJ7ucwB1QiYUNGRM5PyUTKDQOiuYVOfkIsYtAEiWw4TMHofG1t7NfNNjsK73B5xh52OPdbtrN8MlOavsLuLVz5ySj-en98UyW729vC4eVpmTjPdZ4TSjZV5KUZasAio4ExVTvNJr6ZRgzHILZcGpKl0lwIGSUKxRSyF5rlLFlNyOvV1ov_YYe1P76HC3sw22-2h4rrVWskjGmz_GbbsPTdrNUJ1TDRRkMtHR5EIbY8DKdMHXNgyGgjkCM1uTgJkjsONTApYyyzETsEP3G0DEja2xRHMw3AqdjiEpJUUaPokmdeNfAeazr1PV_ViFidjBYzDReWwcrn1A15t16_9Z5BtK-Ijk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197190105</pqid></control><display><type>article</type><title>Dynamic interactive epistemology</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Board, Oliver</creator><creatorcontrib>Board, Oliver</creatorcontrib><description>The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive reasoning have been developed, most notably by Stalnaker [Econ. Philos. 12 (1996) 133–163] and Battigalli and Siniscalchi [J. Econ. Theory 88 (1999) 188–230], and used to analyze rational play in extensive form games. But while the properties of Aumann structures are well understood, without a formal language in which belief and belief revision statements can be expressed, it is unclear exactly what are the properties of these dynamic models. Here we investigate this question by defining such a language. A semantics and syntax are presented, with soundness and completeness theorems linking the two.</description><identifier>ISSN: 0899-8256</identifier><identifier>EISSN: 1090-2473</identifier><identifier>DOI: 10.1016/j.geb.2003.10.006</identifier><language>eng</language><publisher>Duluth: Elsevier Inc</publisher><subject>Belief revision ; Beliefs ; Canon law ; Canonical structure ; Economic theory ; Epistemology ; Game theory ; Human behaviour ; Interactive epistemology ; Language ; Microeconomics ; Semantic ; Semantics ; Syntactic</subject><ispartof>Games and economic behavior, 2004-10, Vol.49 (1), p.49-80</ispartof><rights>2003 Elsevier Inc.</rights><rights>Copyright Academic Press Oct 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523</citedby><cites>FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,33200,33201</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeegamebe/v_3a49_3ay_3a2004_3ai_3a1_3ap_3a49-80.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Board, Oliver</creatorcontrib><title>Dynamic interactive epistemology</title><title>Games and economic behavior</title><description>The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive reasoning have been developed, most notably by Stalnaker [Econ. Philos. 12 (1996) 133–163] and Battigalli and Siniscalchi [J. Econ. Theory 88 (1999) 188–230], and used to analyze rational play in extensive form games. But while the properties of Aumann structures are well understood, without a formal language in which belief and belief revision statements can be expressed, it is unclear exactly what are the properties of these dynamic models. Here we investigate this question by defining such a language. A semantics and syntax are presented, with soundness and completeness theorems linking the two.</description><subject>Belief revision</subject><subject>Beliefs</subject><subject>Canon law</subject><subject>Canonical structure</subject><subject>Economic theory</subject><subject>Epistemology</subject><subject>Game theory</subject><subject>Human behaviour</subject><subject>Interactive epistemology</subject><subject>Language</subject><subject>Microeconomics</subject><subject>Semantic</subject><subject>Semantics</subject><subject>Syntactic</subject><issn>0899-8256</issn><issn>1090-2473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wF1x4W7qzXMmuJL6qFBwo-uQSe_UlM7DZFqYf2_KiAsXLk4uSc45XD5CrinMKVB1t51vsJwzAJ7ucwB1QiYUNGRM5PyUTKDQOiuYVOfkIsYtAEiWw4TMHofG1t7NfNNjsK73B5xh52OPdbtrN8MlOavsLuLVz5ySj-en98UyW729vC4eVpmTjPdZ4TSjZV5KUZasAio4ExVTvNJr6ZRgzHILZcGpKl0lwIGSUKxRSyF5rlLFlNyOvV1ov_YYe1P76HC3sw22-2h4rrVWskjGmz_GbbsPTdrNUJ1TDRRkMtHR5EIbY8DKdMHXNgyGgjkCM1uTgJkjsONTApYyyzETsEP3G0DEja2xRHMw3AqdjiEpJUUaPokmdeNfAeazr1PV_ViFidjBYzDReWwcrn1A15t16_9Z5BtK-Ijk</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Board, Oliver</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Academic Press</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20041001</creationdate><title>Dynamic interactive epistemology</title><author>Board, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Belief revision</topic><topic>Beliefs</topic><topic>Canon law</topic><topic>Canonical structure</topic><topic>Economic theory</topic><topic>Epistemology</topic><topic>Game theory</topic><topic>Human behaviour</topic><topic>Interactive epistemology</topic><topic>Language</topic><topic>Microeconomics</topic><topic>Semantic</topic><topic>Semantics</topic><topic>Syntactic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Board, Oliver</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Games and economic behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Board, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic interactive epistemology</atitle><jtitle>Games and economic behavior</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>49</volume><issue>1</issue><spage>49</spage><epage>80</epage><pages>49-80</pages><issn>0899-8256</issn><eissn>1090-2473</eissn><abstract>The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive reasoning have been developed, most notably by Stalnaker [Econ. Philos. 12 (1996) 133–163] and Battigalli and Siniscalchi [J. Econ. Theory 88 (1999) 188–230], and used to analyze rational play in extensive form games. But while the properties of Aumann structures are well understood, without a formal language in which belief and belief revision statements can be expressed, it is unclear exactly what are the properties of these dynamic models. Here we investigate this question by defining such a language. A semantics and syntax are presented, with soundness and completeness theorems linking the two.</abstract><cop>Duluth</cop><pub>Elsevier Inc</pub><doi>10.1016/j.geb.2003.10.006</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8256 |
ispartof | Games and economic behavior, 2004-10, Vol.49 (1), p.49-80 |
issn | 0899-8256 1090-2473 |
language | eng |
recordid | cdi_proquest_miscellaneous_37999658 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection 2022-2024 |
subjects | Belief revision Beliefs Canon law Canonical structure Economic theory Epistemology Game theory Human behaviour Interactive epistemology Language Microeconomics Semantic Semantics Syntactic |
title | Dynamic interactive epistemology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20interactive%20epistemology&rft.jtitle=Games%20and%20economic%20behavior&rft.au=Board,%20Oliver&rft.date=2004-10-01&rft.volume=49&rft.issue=1&rft.spage=49&rft.epage=80&rft.pages=49-80&rft.issn=0899-8256&rft.eissn=1090-2473&rft_id=info:doi/10.1016/j.geb.2003.10.006&rft_dat=%3Cproquest_cross%3E37999658%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=197190105&rft_id=info:pmid/&rfr_iscdi=true |