Loading…

Dynamic interactive epistemology

The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive rea...

Full description

Saved in:
Bibliographic Details
Published in:Games and economic behavior 2004-10, Vol.49 (1), p.49-80
Main Author: Board, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523
cites cdi_FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523
container_end_page 80
container_issue 1
container_start_page 49
container_title Games and economic behavior
container_volume 49
creator Board, Oliver
description The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive reasoning have been developed, most notably by Stalnaker [Econ. Philos. 12 (1996) 133–163] and Battigalli and Siniscalchi [J. Econ. Theory 88 (1999) 188–230], and used to analyze rational play in extensive form games. But while the properties of Aumann structures are well understood, without a formal language in which belief and belief revision statements can be expressed, it is unclear exactly what are the properties of these dynamic models. Here we investigate this question by defining such a language. A semantics and syntax are presented, with soundness and completeness theorems linking the two.
doi_str_mv 10.1016/j.geb.2003.10.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_37999658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899825603002653</els_id><sourcerecordid>37999658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF1x4W7qzXMmuJL6qFBwo-uQSe_UlM7DZFqYf2_KiAsXLk4uSc45XD5CrinMKVB1t51vsJwzAJ7ucwB1QiYUNGRM5PyUTKDQOiuYVOfkIsYtAEiWw4TMHofG1t7NfNNjsK73B5xh52OPdbtrN8MlOavsLuLVz5ySj-en98UyW729vC4eVpmTjPdZ4TSjZV5KUZasAio4ExVTvNJr6ZRgzHILZcGpKl0lwIGSUKxRSyF5rlLFlNyOvV1ov_YYe1P76HC3sw22-2h4rrVWskjGmz_GbbsPTdrNUJ1TDRRkMtHR5EIbY8DKdMHXNgyGgjkCM1uTgJkjsONTApYyyzETsEP3G0DEja2xRHMw3AqdjiEpJUUaPokmdeNfAeazr1PV_ViFidjBYzDReWwcrn1A15t16_9Z5BtK-Ijk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197190105</pqid></control><display><type>article</type><title>Dynamic interactive epistemology</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Board, Oliver</creator><creatorcontrib>Board, Oliver</creatorcontrib><description>The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive reasoning have been developed, most notably by Stalnaker [Econ. Philos. 12 (1996) 133–163] and Battigalli and Siniscalchi [J. Econ. Theory 88 (1999) 188–230], and used to analyze rational play in extensive form games. But while the properties of Aumann structures are well understood, without a formal language in which belief and belief revision statements can be expressed, it is unclear exactly what are the properties of these dynamic models. Here we investigate this question by defining such a language. A semantics and syntax are presented, with soundness and completeness theorems linking the two.</description><identifier>ISSN: 0899-8256</identifier><identifier>EISSN: 1090-2473</identifier><identifier>DOI: 10.1016/j.geb.2003.10.006</identifier><language>eng</language><publisher>Duluth: Elsevier Inc</publisher><subject>Belief revision ; Beliefs ; Canon law ; Canonical structure ; Economic theory ; Epistemology ; Game theory ; Human behaviour ; Interactive epistemology ; Language ; Microeconomics ; Semantic ; Semantics ; Syntactic</subject><ispartof>Games and economic behavior, 2004-10, Vol.49 (1), p.49-80</ispartof><rights>2003 Elsevier Inc.</rights><rights>Copyright Academic Press Oct 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523</citedby><cites>FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,33200,33201</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeegamebe/v_3a49_3ay_3a2004_3ai_3a1_3ap_3a49-80.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Board, Oliver</creatorcontrib><title>Dynamic interactive epistemology</title><title>Games and economic behavior</title><description>The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive reasoning have been developed, most notably by Stalnaker [Econ. Philos. 12 (1996) 133–163] and Battigalli and Siniscalchi [J. Econ. Theory 88 (1999) 188–230], and used to analyze rational play in extensive form games. But while the properties of Aumann structures are well understood, without a formal language in which belief and belief revision statements can be expressed, it is unclear exactly what are the properties of these dynamic models. Here we investigate this question by defining such a language. A semantics and syntax are presented, with soundness and completeness theorems linking the two.</description><subject>Belief revision</subject><subject>Beliefs</subject><subject>Canon law</subject><subject>Canonical structure</subject><subject>Economic theory</subject><subject>Epistemology</subject><subject>Game theory</subject><subject>Human behaviour</subject><subject>Interactive epistemology</subject><subject>Language</subject><subject>Microeconomics</subject><subject>Semantic</subject><subject>Semantics</subject><subject>Syntactic</subject><issn>0899-8256</issn><issn>1090-2473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wF1x4W7qzXMmuJL6qFBwo-uQSe_UlM7DZFqYf2_KiAsXLk4uSc45XD5CrinMKVB1t51vsJwzAJ7ucwB1QiYUNGRM5PyUTKDQOiuYVOfkIsYtAEiWw4TMHofG1t7NfNNjsK73B5xh52OPdbtrN8MlOavsLuLVz5ySj-en98UyW729vC4eVpmTjPdZ4TSjZV5KUZasAio4ExVTvNJr6ZRgzHILZcGpKl0lwIGSUKxRSyF5rlLFlNyOvV1ov_YYe1P76HC3sw22-2h4rrVWskjGmz_GbbsPTdrNUJ1TDRRkMtHR5EIbY8DKdMHXNgyGgjkCM1uTgJkjsONTApYyyzETsEP3G0DEja2xRHMw3AqdjiEpJUUaPokmdeNfAeazr1PV_ViFidjBYzDReWwcrn1A15t16_9Z5BtK-Ijk</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Board, Oliver</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Academic Press</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20041001</creationdate><title>Dynamic interactive epistemology</title><author>Board, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Belief revision</topic><topic>Beliefs</topic><topic>Canon law</topic><topic>Canonical structure</topic><topic>Economic theory</topic><topic>Epistemology</topic><topic>Game theory</topic><topic>Human behaviour</topic><topic>Interactive epistemology</topic><topic>Language</topic><topic>Microeconomics</topic><topic>Semantic</topic><topic>Semantics</topic><topic>Syntactic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Board, Oliver</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Games and economic behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Board, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic interactive epistemology</atitle><jtitle>Games and economic behavior</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>49</volume><issue>1</issue><spage>49</spage><epage>80</epage><pages>49-80</pages><issn>0899-8256</issn><eissn>1090-2473</eissn><abstract>The epistemic program in game theory uses formal models of interactive reasoning to provide foundations for various game-theoretic solution concepts. Much of this work is based around the (static) Aumann structure model of interactive epistemology, but more recently dynamic models of interactive reasoning have been developed, most notably by Stalnaker [Econ. Philos. 12 (1996) 133–163] and Battigalli and Siniscalchi [J. Econ. Theory 88 (1999) 188–230], and used to analyze rational play in extensive form games. But while the properties of Aumann structures are well understood, without a formal language in which belief and belief revision statements can be expressed, it is unclear exactly what are the properties of these dynamic models. Here we investigate this question by defining such a language. A semantics and syntax are presented, with soundness and completeness theorems linking the two.</abstract><cop>Duluth</cop><pub>Elsevier Inc</pub><doi>10.1016/j.geb.2003.10.006</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-8256
ispartof Games and economic behavior, 2004-10, Vol.49 (1), p.49-80
issn 0899-8256
1090-2473
language eng
recordid cdi_proquest_miscellaneous_37999658
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection 2022-2024
subjects Belief revision
Beliefs
Canon law
Canonical structure
Economic theory
Epistemology
Game theory
Human behaviour
Interactive epistemology
Language
Microeconomics
Semantic
Semantics
Syntactic
title Dynamic interactive epistemology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20interactive%20epistemology&rft.jtitle=Games%20and%20economic%20behavior&rft.au=Board,%20Oliver&rft.date=2004-10-01&rft.volume=49&rft.issue=1&rft.spage=49&rft.epage=80&rft.pages=49-80&rft.issn=0899-8256&rft.eissn=1090-2473&rft_id=info:doi/10.1016/j.geb.2003.10.006&rft_dat=%3Cproquest_cross%3E37999658%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-8c921b7b54bb2f014324f263f9d5c6422a3a0b8316bcf40c06508de9545376523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=197190105&rft_id=info:pmid/&rfr_iscdi=true