Loading…
A comparison of extreme value theory approaches for determining value at risk
This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captu...
Saved in:
Published in: | Journal of empirical finance 2005-03, Vol.12 (2), p.339-352 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783 |
---|---|
cites | cdi_FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783 |
container_end_page | 352 |
container_issue | 2 |
container_start_page | 339 |
container_title | Journal of empirical finance |
container_volume | 12 |
creator | Brooks, C. Clare, A.D. Dalle Molle, J.W. Persand, G. |
description | This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate. |
doi_str_mv | 10.1016/j.jempfin.2004.01.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38060214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927539804000854</els_id><sourcerecordid>38060214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCEg-cUuwHad2Tqiq-BWIC5wt42yoSxMHO63o27NVKq5YWo8P34zWQ8glZzlnfHa9ylfQ9o3vcsGYzBnPUY7IhGtVZVwJdUwmrBIqK4tKn5KzlFaMsZmWakJe5tSFtrfRp9DR0FD4GSK0QLd2vQE6LCHEHbV9H4N1S0i0CZHWMEBsfee7zwNnB4oJX-fkpLHrBBcHnZL3u9u3xUP2_Hr_uJg_Z64UM5npuhQfsrLCcS6tk6IUda2Fdpo71wj8haq0lgKqStWSoxayqZXYw5YrXUzJ1ZiLa31vIA2m9cnBem07CJtkCs1mDHEEyxF0MaQUoTF99K2NO8OZ2ZdnVuZQntmXZxg3KOh7Gn0RenB_JsAzwltTWC7w2uGgs0Tx-ydOj1MUlSlKYZZDi2E3YxhgJVsP0STnoXNQ-whuMHXw_6zzCxyik5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38060214</pqid></control><display><type>article</type><title>A comparison of extreme value theory approaches for determining value at risk</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><creator>Brooks, C. ; Clare, A.D. ; Dalle Molle, J.W. ; Persand, G.</creator><creatorcontrib>Brooks, C. ; Clare, A.D. ; Dalle Molle, J.W. ; Persand, G.</creatorcontrib><description>This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.</description><identifier>ISSN: 0927-5398</identifier><identifier>EISSN: 1879-1727</identifier><identifier>DOI: 10.1016/j.jempfin.2004.01.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bootstrap ; Finance ; GARCH models ; Generalised Pareto Distribution ; Parametric ; Pareto efficiency ; Regression analysis ; Risk ; Semi-nonparametric and small sample bias corrected tail index estimators ; Value at risk (VaR) ; Value theory</subject><ispartof>Journal of empirical finance, 2005-03, Vol.12 (2), p.339-352</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783</citedby><cites>FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeempfin/v_3a12_3ay_3a2005_3ai_3a2_3ap_3a339-352.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Brooks, C.</creatorcontrib><creatorcontrib>Clare, A.D.</creatorcontrib><creatorcontrib>Dalle Molle, J.W.</creatorcontrib><creatorcontrib>Persand, G.</creatorcontrib><title>A comparison of extreme value theory approaches for determining value at risk</title><title>Journal of empirical finance</title><description>This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.</description><subject>Bootstrap</subject><subject>Finance</subject><subject>GARCH models</subject><subject>Generalised Pareto Distribution</subject><subject>Parametric</subject><subject>Pareto efficiency</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Semi-nonparametric and small sample bias corrected tail index estimators</subject><subject>Value at risk (VaR)</subject><subject>Value theory</subject><issn>0927-5398</issn><issn>1879-1727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkM1OwzAQhC0EEqXwCEg-cUuwHad2Tqiq-BWIC5wt42yoSxMHO63o27NVKq5YWo8P34zWQ8glZzlnfHa9ylfQ9o3vcsGYzBnPUY7IhGtVZVwJdUwmrBIqK4tKn5KzlFaMsZmWakJe5tSFtrfRp9DR0FD4GSK0QLd2vQE6LCHEHbV9H4N1S0i0CZHWMEBsfee7zwNnB4oJX-fkpLHrBBcHnZL3u9u3xUP2_Hr_uJg_Z64UM5npuhQfsrLCcS6tk6IUda2Fdpo71wj8haq0lgKqStWSoxayqZXYw5YrXUzJ1ZiLa31vIA2m9cnBem07CJtkCs1mDHEEyxF0MaQUoTF99K2NO8OZ2ZdnVuZQntmXZxg3KOh7Gn0RenB_JsAzwltTWC7w2uGgs0Tx-ydOj1MUlSlKYZZDi2E3YxhgJVsP0STnoXNQ-whuMHXw_6zzCxyik5k</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Brooks, C.</creator><creator>Clare, A.D.</creator><creator>Dalle Molle, J.W.</creator><creator>Persand, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200503</creationdate><title>A comparison of extreme value theory approaches for determining value at risk</title><author>Brooks, C. ; Clare, A.D. ; Dalle Molle, J.W. ; Persand, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bootstrap</topic><topic>Finance</topic><topic>GARCH models</topic><topic>Generalised Pareto Distribution</topic><topic>Parametric</topic><topic>Pareto efficiency</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Semi-nonparametric and small sample bias corrected tail index estimators</topic><topic>Value at risk (VaR)</topic><topic>Value theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, C.</creatorcontrib><creatorcontrib>Clare, A.D.</creatorcontrib><creatorcontrib>Dalle Molle, J.W.</creatorcontrib><creatorcontrib>Persand, G.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of empirical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, C.</au><au>Clare, A.D.</au><au>Dalle Molle, J.W.</au><au>Persand, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of extreme value theory approaches for determining value at risk</atitle><jtitle>Journal of empirical finance</jtitle><date>2005-03</date><risdate>2005</risdate><volume>12</volume><issue>2</issue><spage>339</spage><epage>352</epage><pages>339-352</pages><issn>0927-5398</issn><eissn>1879-1727</eissn><abstract>This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jempfin.2004.01.004</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-5398 |
ispartof | Journal of empirical finance, 2005-03, Vol.12 (2), p.339-352 |
issn | 0927-5398 1879-1727 |
language | eng |
recordid | cdi_proquest_miscellaneous_38060214 |
source | International Bibliography of the Social Sciences (IBSS); Elsevier |
subjects | Bootstrap Finance GARCH models Generalised Pareto Distribution Parametric Pareto efficiency Regression analysis Risk Semi-nonparametric and small sample bias corrected tail index estimators Value at risk (VaR) Value theory |
title | A comparison of extreme value theory approaches for determining value at risk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20extreme%20value%20theory%20approaches%20for%20determining%20value%20at%20risk&rft.jtitle=Journal%20of%20empirical%20finance&rft.au=Brooks,%20C.&rft.date=2005-03&rft.volume=12&rft.issue=2&rft.spage=339&rft.epage=352&rft.pages=339-352&rft.issn=0927-5398&rft.eissn=1879-1727&rft_id=info:doi/10.1016/j.jempfin.2004.01.004&rft_dat=%3Cproquest_cross%3E38060214%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=38060214&rft_id=info:pmid/&rfr_iscdi=true |