Loading…

A comparison of extreme value theory approaches for determining value at risk

This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of empirical finance 2005-03, Vol.12 (2), p.339-352
Main Authors: Brooks, C., Clare, A.D., Dalle Molle, J.W., Persand, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783
cites cdi_FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783
container_end_page 352
container_issue 2
container_start_page 339
container_title Journal of empirical finance
container_volume 12
creator Brooks, C.
Clare, A.D.
Dalle Molle, J.W.
Persand, G.
description This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.
doi_str_mv 10.1016/j.jempfin.2004.01.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38060214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927539804000854</els_id><sourcerecordid>38060214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCEg-cUuwHad2Tqiq-BWIC5wt42yoSxMHO63o27NVKq5YWo8P34zWQ8glZzlnfHa9ylfQ9o3vcsGYzBnPUY7IhGtVZVwJdUwmrBIqK4tKn5KzlFaMsZmWakJe5tSFtrfRp9DR0FD4GSK0QLd2vQE6LCHEHbV9H4N1S0i0CZHWMEBsfee7zwNnB4oJX-fkpLHrBBcHnZL3u9u3xUP2_Hr_uJg_Z64UM5npuhQfsrLCcS6tk6IUda2Fdpo71wj8haq0lgKqStWSoxayqZXYw5YrXUzJ1ZiLa31vIA2m9cnBem07CJtkCs1mDHEEyxF0MaQUoTF99K2NO8OZ2ZdnVuZQntmXZxg3KOh7Gn0RenB_JsAzwltTWC7w2uGgs0Tx-ydOj1MUlSlKYZZDi2E3YxhgJVsP0STnoXNQ-whuMHXw_6zzCxyik5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38060214</pqid></control><display><type>article</type><title>A comparison of extreme value theory approaches for determining value at risk</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><creator>Brooks, C. ; Clare, A.D. ; Dalle Molle, J.W. ; Persand, G.</creator><creatorcontrib>Brooks, C. ; Clare, A.D. ; Dalle Molle, J.W. ; Persand, G.</creatorcontrib><description>This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.</description><identifier>ISSN: 0927-5398</identifier><identifier>EISSN: 1879-1727</identifier><identifier>DOI: 10.1016/j.jempfin.2004.01.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bootstrap ; Finance ; GARCH models ; Generalised Pareto Distribution ; Parametric ; Pareto efficiency ; Regression analysis ; Risk ; Semi-nonparametric and small sample bias corrected tail index estimators ; Value at risk (VaR) ; Value theory</subject><ispartof>Journal of empirical finance, 2005-03, Vol.12 (2), p.339-352</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783</citedby><cites>FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeempfin/v_3a12_3ay_3a2005_3ai_3a2_3ap_3a339-352.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Brooks, C.</creatorcontrib><creatorcontrib>Clare, A.D.</creatorcontrib><creatorcontrib>Dalle Molle, J.W.</creatorcontrib><creatorcontrib>Persand, G.</creatorcontrib><title>A comparison of extreme value theory approaches for determining value at risk</title><title>Journal of empirical finance</title><description>This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.</description><subject>Bootstrap</subject><subject>Finance</subject><subject>GARCH models</subject><subject>Generalised Pareto Distribution</subject><subject>Parametric</subject><subject>Pareto efficiency</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Semi-nonparametric and small sample bias corrected tail index estimators</subject><subject>Value at risk (VaR)</subject><subject>Value theory</subject><issn>0927-5398</issn><issn>1879-1727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkM1OwzAQhC0EEqXwCEg-cUuwHad2Tqiq-BWIC5wt42yoSxMHO63o27NVKq5YWo8P34zWQ8glZzlnfHa9ylfQ9o3vcsGYzBnPUY7IhGtVZVwJdUwmrBIqK4tKn5KzlFaMsZmWakJe5tSFtrfRp9DR0FD4GSK0QLd2vQE6LCHEHbV9H4N1S0i0CZHWMEBsfee7zwNnB4oJX-fkpLHrBBcHnZL3u9u3xUP2_Hr_uJg_Z64UM5npuhQfsrLCcS6tk6IUda2Fdpo71wj8haq0lgKqStWSoxayqZXYw5YrXUzJ1ZiLa31vIA2m9cnBem07CJtkCs1mDHEEyxF0MaQUoTF99K2NO8OZ2ZdnVuZQntmXZxg3KOh7Gn0RenB_JsAzwltTWC7w2uGgs0Tx-ydOj1MUlSlKYZZDi2E3YxhgJVsP0STnoXNQ-whuMHXw_6zzCxyik5k</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Brooks, C.</creator><creator>Clare, A.D.</creator><creator>Dalle Molle, J.W.</creator><creator>Persand, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200503</creationdate><title>A comparison of extreme value theory approaches for determining value at risk</title><author>Brooks, C. ; Clare, A.D. ; Dalle Molle, J.W. ; Persand, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bootstrap</topic><topic>Finance</topic><topic>GARCH models</topic><topic>Generalised Pareto Distribution</topic><topic>Parametric</topic><topic>Pareto efficiency</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Semi-nonparametric and small sample bias corrected tail index estimators</topic><topic>Value at risk (VaR)</topic><topic>Value theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, C.</creatorcontrib><creatorcontrib>Clare, A.D.</creatorcontrib><creatorcontrib>Dalle Molle, J.W.</creatorcontrib><creatorcontrib>Persand, G.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of empirical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, C.</au><au>Clare, A.D.</au><au>Dalle Molle, J.W.</au><au>Persand, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of extreme value theory approaches for determining value at risk</atitle><jtitle>Journal of empirical finance</jtitle><date>2005-03</date><risdate>2005</risdate><volume>12</volume><issue>2</issue><spage>339</spage><epage>352</epage><pages>339-352</pages><issn>0927-5398</issn><eissn>1879-1727</eissn><abstract>This paper compares a number of different extreme value models for determining the value at risk (VaR) of three LIFFE futures contracts. A semi-nonparametric approach is also proposed, where the tail events are modeled using the generalised Pareto distribution, and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared with those of standard nonparametric extreme value tail estimation approaches, with a small sample bias-corrected extreme value approach, and with those calculated from bootstrapping the unconditional density and bootstrapping from a GARCH(1,1) model. The results indicate that, for a holdout sample, the proposed semi-nonparametric extreme value approach yields superior results to other methods, but the small sample tail index technique is also accurate.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jempfin.2004.01.004</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-5398
ispartof Journal of empirical finance, 2005-03, Vol.12 (2), p.339-352
issn 0927-5398
1879-1727
language eng
recordid cdi_proquest_miscellaneous_38060214
source International Bibliography of the Social Sciences (IBSS); Elsevier
subjects Bootstrap
Finance
GARCH models
Generalised Pareto Distribution
Parametric
Pareto efficiency
Regression analysis
Risk
Semi-nonparametric and small sample bias corrected tail index estimators
Value at risk (VaR)
Value theory
title A comparison of extreme value theory approaches for determining value at risk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20extreme%20value%20theory%20approaches%20for%20determining%20value%20at%20risk&rft.jtitle=Journal%20of%20empirical%20finance&rft.au=Brooks,%20C.&rft.date=2005-03&rft.volume=12&rft.issue=2&rft.spage=339&rft.epage=352&rft.pages=339-352&rft.issn=0927-5398&rft.eissn=1879-1727&rft_id=info:doi/10.1016/j.jempfin.2004.01.004&rft_dat=%3Cproquest_cross%3E38060214%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5264-8d52b49a2c114ac4252dd828c81ccf2200798842e997d412e934fd7214aca1783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=38060214&rft_id=info:pmid/&rfr_iscdi=true