Loading…

Computational Methods for Measuring the Difference of Empirical Distributions

This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with...

Full description

Saved in:
Bibliographic Details
Published in:American journal of agricultural economics 2005-05, Vol.87 (2), p.353-365
Main Authors: Poe, Gregory L., Giraud, Kelly L., Loomis, John B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83
cites cdi_FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83
container_end_page 365
container_issue 2
container_start_page 353
container_title American journal of agricultural economics
container_volume 87
creator Poe, Gregory L.
Giraud, Kelly L.
Loomis, John B.
description This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with other methods (empirical convolutions, repeated sampling, normality, nonoverlapping confidence intervals) that have been suggested in the literature. Tradeoffs between methods are discussed in terms of programming complexity, time and computer resources required, bias, and the precision of the estimate.
doi_str_mv 10.1111/j.1467-8276.2005.00727.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38172149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3697850</jstor_id><oup_id>10.1111/j.1467-8276.2005.00727.x</oup_id><sourcerecordid>3697850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83</originalsourceid><addsrcrecordid>eNqNkc9v0zAcxS3EJMrGf8Ah4oC4JPhHYjvH0ha2qRUHhqi4WI5rM4e0DnYiuv9-9oJ6QGPCFzv6vPccfx8AGYIFiut9W6CSspxjRgsMYVVAyDArjs_A7ASegxmEEOc1rPEL8DKENn5CVPMZ2Czcvh8HOVh3kF220cOt24XMOB_PMozeHn5kw63OltYY7fVB6cyZbLXvrbcqOpY2DN42YwoIF-DMyC7oV3_2c_D14-pmcZmvP3-6WszXuaIV2uaYGa4oVXxHSoMYrptSlZAiiZjGujGw2ZVaakIp5DvOOaPKVAxKSREjjeHkHLydcnvvfo06DGJvg9JdJw_ajUEQHlNRWUfhuyeFiDJUcogRidI3f0lbN_o4lCAwIVHIGYwiPomUdyF4bUTv7V76O4GgSH2IVqSxizR2kfoQD32IY7RuJutv2-m7__aJ-fV8dZ1YQok8gG3MI1OeG_t_pOWP_cXrydWGwfmTj9Ca8Sq9L59wbFUfT1j6n4Iywipxuf0uvnxj6-VNvOoDuQdXhLtO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233167870</pqid></control><display><type>article</type><title>Computational Methods for Measuring the Difference of Empirical Distributions</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Poe, Gregory L. ; Giraud, Kelly L. ; Loomis, John B.</creator><creatorcontrib>Poe, Gregory L. ; Giraud, Kelly L. ; Loomis, John B.</creatorcontrib><description>This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with other methods (empirical convolutions, repeated sampling, normality, nonoverlapping confidence intervals) that have been suggested in the literature. Tradeoffs between methods are discussed in terms of programming complexity, time and computer resources required, bias, and the precision of the estimate.</description><identifier>ISSN: 0002-9092</identifier><identifier>EISSN: 1467-8276</identifier><identifier>DOI: 10.1111/j.1467-8276.2005.00727.x</identifier><identifier>CODEN: AJAEBA</identifier><language>eng</language><publisher>Malden: Oxford University Press</publisher><subject>Agricultural economics ; Agricultural management ; Applied economics ; Bootstrap mechanism ; Bootstrap method ; bootstrapping ; C150 ; Combinatorial analysis ; Computation ; Computer programs ; Confidence interval ; Confidence intervals ; contingent valuation ; Data analysis ; Economic models ; Economic theory ; Economics ; Empirical analysis ; Empirical research ; Endangered species ; Estimation methods ; Land economics ; measuring differences of distributions ; Methodology ; Nonparametric models ; Polynomials ; Programming ; Q510 ; Q570 ; Samples ; Sampling ; Scientific method ; scope testing ; Significance level ; Social science research ; Statistical analysis ; Statistical models ; Studies ; Valuation</subject><ispartof>American journal of agricultural economics, 2005-05, Vol.87 (2), p.353-365</ispartof><rights>Copyright 2005 American Agricultural Economics Association</rights><rights>Copyright 2005 American Agricultural Economics Association 2005</rights><rights>2005 Agricultural and Applied Economics Association</rights><rights>Copyright Blackwell Publishing May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83</citedby><cites>FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3697850$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3697850$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,33224,58238,58471</link.rule.ids></links><search><creatorcontrib>Poe, Gregory L.</creatorcontrib><creatorcontrib>Giraud, Kelly L.</creatorcontrib><creatorcontrib>Loomis, John B.</creatorcontrib><title>Computational Methods for Measuring the Difference of Empirical Distributions</title><title>American journal of agricultural economics</title><addtitle>American Journal of Agricultural Economics</addtitle><addtitle>American Journal of Agricultural Economics</addtitle><description>This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with other methods (empirical convolutions, repeated sampling, normality, nonoverlapping confidence intervals) that have been suggested in the literature. Tradeoffs between methods are discussed in terms of programming complexity, time and computer resources required, bias, and the precision of the estimate.</description><subject>Agricultural economics</subject><subject>Agricultural management</subject><subject>Applied economics</subject><subject>Bootstrap mechanism</subject><subject>Bootstrap method</subject><subject>bootstrapping</subject><subject>C150</subject><subject>Combinatorial analysis</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Confidence interval</subject><subject>Confidence intervals</subject><subject>contingent valuation</subject><subject>Data analysis</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Empirical research</subject><subject>Endangered species</subject><subject>Estimation methods</subject><subject>Land economics</subject><subject>measuring differences of distributions</subject><subject>Methodology</subject><subject>Nonparametric models</subject><subject>Polynomials</subject><subject>Programming</subject><subject>Q510</subject><subject>Q570</subject><subject>Samples</subject><subject>Sampling</subject><subject>Scientific method</subject><subject>scope testing</subject><subject>Significance level</subject><subject>Social science research</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Studies</subject><subject>Valuation</subject><issn>0002-9092</issn><issn>1467-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkc9v0zAcxS3EJMrGf8Ah4oC4JPhHYjvH0ha2qRUHhqi4WI5rM4e0DnYiuv9-9oJ6QGPCFzv6vPccfx8AGYIFiut9W6CSspxjRgsMYVVAyDArjs_A7ASegxmEEOc1rPEL8DKENn5CVPMZ2Czcvh8HOVh3kF220cOt24XMOB_PMozeHn5kw63OltYY7fVB6cyZbLXvrbcqOpY2DN42YwoIF-DMyC7oV3_2c_D14-pmcZmvP3-6WszXuaIV2uaYGa4oVXxHSoMYrptSlZAiiZjGujGw2ZVaakIp5DvOOaPKVAxKSREjjeHkHLydcnvvfo06DGJvg9JdJw_ajUEQHlNRWUfhuyeFiDJUcogRidI3f0lbN_o4lCAwIVHIGYwiPomUdyF4bUTv7V76O4GgSH2IVqSxizR2kfoQD32IY7RuJutv2-m7__aJ-fV8dZ1YQok8gG3MI1OeG_t_pOWP_cXrydWGwfmTj9Ca8Sq9L59wbFUfT1j6n4Iywipxuf0uvnxj6-VNvOoDuQdXhLtO</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Poe, Gregory L.</creator><creator>Giraud, Kelly L.</creator><creator>Loomis, John B.</creator><general>Oxford University Press</general><general>American Agricultural Economics Association</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200505</creationdate><title>Computational Methods for Measuring the Difference of Empirical Distributions</title><author>Poe, Gregory L. ; Giraud, Kelly L. ; Loomis, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Agricultural economics</topic><topic>Agricultural management</topic><topic>Applied economics</topic><topic>Bootstrap mechanism</topic><topic>Bootstrap method</topic><topic>bootstrapping</topic><topic>C150</topic><topic>Combinatorial analysis</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Confidence interval</topic><topic>Confidence intervals</topic><topic>contingent valuation</topic><topic>Data analysis</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Empirical research</topic><topic>Endangered species</topic><topic>Estimation methods</topic><topic>Land economics</topic><topic>measuring differences of distributions</topic><topic>Methodology</topic><topic>Nonparametric models</topic><topic>Polynomials</topic><topic>Programming</topic><topic>Q510</topic><topic>Q570</topic><topic>Samples</topic><topic>Sampling</topic><topic>Scientific method</topic><topic>scope testing</topic><topic>Significance level</topic><topic>Social science research</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Studies</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poe, Gregory L.</creatorcontrib><creatorcontrib>Giraud, Kelly L.</creatorcontrib><creatorcontrib>Loomis, John B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>American journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poe, Gregory L.</au><au>Giraud, Kelly L.</au><au>Loomis, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Methods for Measuring the Difference of Empirical Distributions</atitle><jtitle>American journal of agricultural economics</jtitle><stitle>American Journal of Agricultural Economics</stitle><addtitle>American Journal of Agricultural Economics</addtitle><date>2005-05</date><risdate>2005</risdate><volume>87</volume><issue>2</issue><spage>353</spage><epage>365</epage><pages>353-365</pages><issn>0002-9092</issn><eissn>1467-8276</eissn><coden>AJAEBA</coden><abstract>This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with other methods (empirical convolutions, repeated sampling, normality, nonoverlapping confidence intervals) that have been suggested in the literature. Tradeoffs between methods are discussed in terms of programming complexity, time and computer resources required, bias, and the precision of the estimate.</abstract><cop>Malden</cop><pub>Oxford University Press</pub><doi>10.1111/j.1467-8276.2005.00727.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9092
ispartof American journal of agricultural economics, 2005-05, Vol.87 (2), p.353-365
issn 0002-9092
1467-8276
language eng
recordid cdi_proquest_miscellaneous_38172149
source EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection; BSC - Ebsco (Business Source Ultimate)
subjects Agricultural economics
Agricultural management
Applied economics
Bootstrap mechanism
Bootstrap method
bootstrapping
C150
Combinatorial analysis
Computation
Computer programs
Confidence interval
Confidence intervals
contingent valuation
Data analysis
Economic models
Economic theory
Economics
Empirical analysis
Empirical research
Endangered species
Estimation methods
Land economics
measuring differences of distributions
Methodology
Nonparametric models
Polynomials
Programming
Q510
Q570
Samples
Sampling
Scientific method
scope testing
Significance level
Social science research
Statistical analysis
Statistical models
Studies
Valuation
title Computational Methods for Measuring the Difference of Empirical Distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Methods%20for%20Measuring%20the%20Difference%20of%20Empirical%20Distributions&rft.jtitle=American%20journal%20of%20agricultural%20economics&rft.au=Poe,%20Gregory%20L.&rft.date=2005-05&rft.volume=87&rft.issue=2&rft.spage=353&rft.epage=365&rft.pages=353-365&rft.issn=0002-9092&rft.eissn=1467-8276&rft.coden=AJAEBA&rft_id=info:doi/10.1111/j.1467-8276.2005.00727.x&rft_dat=%3Cjstor_proqu%3E3697850%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=233167870&rft_id=info:pmid/&rft_jstor_id=3697850&rft_oup_id=10.1111/j.1467-8276.2005.00727.x&rfr_iscdi=true