Loading…
Computational Methods for Measuring the Difference of Empirical Distributions
This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with...
Saved in:
Published in: | American journal of agricultural economics 2005-05, Vol.87 (2), p.353-365 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83 |
---|---|
cites | cdi_FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83 |
container_end_page | 365 |
container_issue | 2 |
container_start_page | 353 |
container_title | American journal of agricultural economics |
container_volume | 87 |
creator | Poe, Gregory L. Giraud, Kelly L. Loomis, John B. |
description | This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with other methods (empirical convolutions, repeated sampling, normality, nonoverlapping confidence intervals) that have been suggested in the literature. Tradeoffs between methods are discussed in terms of programming complexity, time and computer resources required, bias, and the precision of the estimate. |
doi_str_mv | 10.1111/j.1467-8276.2005.00727.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38172149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3697850</jstor_id><oup_id>10.1111/j.1467-8276.2005.00727.x</oup_id><sourcerecordid>3697850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83</originalsourceid><addsrcrecordid>eNqNkc9v0zAcxS3EJMrGf8Ah4oC4JPhHYjvH0ha2qRUHhqi4WI5rM4e0DnYiuv9-9oJ6QGPCFzv6vPccfx8AGYIFiut9W6CSspxjRgsMYVVAyDArjs_A7ASegxmEEOc1rPEL8DKENn5CVPMZ2Czcvh8HOVh3kF220cOt24XMOB_PMozeHn5kw63OltYY7fVB6cyZbLXvrbcqOpY2DN42YwoIF-DMyC7oV3_2c_D14-pmcZmvP3-6WszXuaIV2uaYGa4oVXxHSoMYrptSlZAiiZjGujGw2ZVaakIp5DvOOaPKVAxKSREjjeHkHLydcnvvfo06DGJvg9JdJw_ajUEQHlNRWUfhuyeFiDJUcogRidI3f0lbN_o4lCAwIVHIGYwiPomUdyF4bUTv7V76O4GgSH2IVqSxizR2kfoQD32IY7RuJutv2-m7__aJ-fV8dZ1YQok8gG3MI1OeG_t_pOWP_cXrydWGwfmTj9Ca8Sq9L59wbFUfT1j6n4Iywipxuf0uvnxj6-VNvOoDuQdXhLtO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233167870</pqid></control><display><type>article</type><title>Computational Methods for Measuring the Difference of Empirical Distributions</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Poe, Gregory L. ; Giraud, Kelly L. ; Loomis, John B.</creator><creatorcontrib>Poe, Gregory L. ; Giraud, Kelly L. ; Loomis, John B.</creatorcontrib><description>This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with other methods (empirical convolutions, repeated sampling, normality, nonoverlapping confidence intervals) that have been suggested in the literature. Tradeoffs between methods are discussed in terms of programming complexity, time and computer resources required, bias, and the precision of the estimate.</description><identifier>ISSN: 0002-9092</identifier><identifier>EISSN: 1467-8276</identifier><identifier>DOI: 10.1111/j.1467-8276.2005.00727.x</identifier><identifier>CODEN: AJAEBA</identifier><language>eng</language><publisher>Malden: Oxford University Press</publisher><subject>Agricultural economics ; Agricultural management ; Applied economics ; Bootstrap mechanism ; Bootstrap method ; bootstrapping ; C150 ; Combinatorial analysis ; Computation ; Computer programs ; Confidence interval ; Confidence intervals ; contingent valuation ; Data analysis ; Economic models ; Economic theory ; Economics ; Empirical analysis ; Empirical research ; Endangered species ; Estimation methods ; Land economics ; measuring differences of distributions ; Methodology ; Nonparametric models ; Polynomials ; Programming ; Q510 ; Q570 ; Samples ; Sampling ; Scientific method ; scope testing ; Significance level ; Social science research ; Statistical analysis ; Statistical models ; Studies ; Valuation</subject><ispartof>American journal of agricultural economics, 2005-05, Vol.87 (2), p.353-365</ispartof><rights>Copyright 2005 American Agricultural Economics Association</rights><rights>Copyright 2005 American Agricultural Economics Association 2005</rights><rights>2005 Agricultural and Applied Economics Association</rights><rights>Copyright Blackwell Publishing May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83</citedby><cites>FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3697850$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3697850$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,33223,33224,58238,58471</link.rule.ids></links><search><creatorcontrib>Poe, Gregory L.</creatorcontrib><creatorcontrib>Giraud, Kelly L.</creatorcontrib><creatorcontrib>Loomis, John B.</creatorcontrib><title>Computational Methods for Measuring the Difference of Empirical Distributions</title><title>American journal of agricultural economics</title><addtitle>American Journal of Agricultural Economics</addtitle><addtitle>American Journal of Agricultural Economics</addtitle><description>This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with other methods (empirical convolutions, repeated sampling, normality, nonoverlapping confidence intervals) that have been suggested in the literature. Tradeoffs between methods are discussed in terms of programming complexity, time and computer resources required, bias, and the precision of the estimate.</description><subject>Agricultural economics</subject><subject>Agricultural management</subject><subject>Applied economics</subject><subject>Bootstrap mechanism</subject><subject>Bootstrap method</subject><subject>bootstrapping</subject><subject>C150</subject><subject>Combinatorial analysis</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Confidence interval</subject><subject>Confidence intervals</subject><subject>contingent valuation</subject><subject>Data analysis</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Empirical research</subject><subject>Endangered species</subject><subject>Estimation methods</subject><subject>Land economics</subject><subject>measuring differences of distributions</subject><subject>Methodology</subject><subject>Nonparametric models</subject><subject>Polynomials</subject><subject>Programming</subject><subject>Q510</subject><subject>Q570</subject><subject>Samples</subject><subject>Sampling</subject><subject>Scientific method</subject><subject>scope testing</subject><subject>Significance level</subject><subject>Social science research</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Studies</subject><subject>Valuation</subject><issn>0002-9092</issn><issn>1467-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNkc9v0zAcxS3EJMrGf8Ah4oC4JPhHYjvH0ha2qRUHhqi4WI5rM4e0DnYiuv9-9oJ6QGPCFzv6vPccfx8AGYIFiut9W6CSspxjRgsMYVVAyDArjs_A7ASegxmEEOc1rPEL8DKENn5CVPMZ2Czcvh8HOVh3kF220cOt24XMOB_PMozeHn5kw63OltYY7fVB6cyZbLXvrbcqOpY2DN42YwoIF-DMyC7oV3_2c_D14-pmcZmvP3-6WszXuaIV2uaYGa4oVXxHSoMYrptSlZAiiZjGujGw2ZVaakIp5DvOOaPKVAxKSREjjeHkHLydcnvvfo06DGJvg9JdJw_ajUEQHlNRWUfhuyeFiDJUcogRidI3f0lbN_o4lCAwIVHIGYwiPomUdyF4bUTv7V76O4GgSH2IVqSxizR2kfoQD32IY7RuJutv2-m7__aJ-fV8dZ1YQok8gG3MI1OeG_t_pOWP_cXrydWGwfmTj9Ca8Sq9L59wbFUfT1j6n4Iywipxuf0uvnxj6-VNvOoDuQdXhLtO</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Poe, Gregory L.</creator><creator>Giraud, Kelly L.</creator><creator>Loomis, John B.</creator><general>Oxford University Press</general><general>American Agricultural Economics Association</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200505</creationdate><title>Computational Methods for Measuring the Difference of Empirical Distributions</title><author>Poe, Gregory L. ; Giraud, Kelly L. ; Loomis, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Agricultural economics</topic><topic>Agricultural management</topic><topic>Applied economics</topic><topic>Bootstrap mechanism</topic><topic>Bootstrap method</topic><topic>bootstrapping</topic><topic>C150</topic><topic>Combinatorial analysis</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Confidence interval</topic><topic>Confidence intervals</topic><topic>contingent valuation</topic><topic>Data analysis</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Empirical research</topic><topic>Endangered species</topic><topic>Estimation methods</topic><topic>Land economics</topic><topic>measuring differences of distributions</topic><topic>Methodology</topic><topic>Nonparametric models</topic><topic>Polynomials</topic><topic>Programming</topic><topic>Q510</topic><topic>Q570</topic><topic>Samples</topic><topic>Sampling</topic><topic>Scientific method</topic><topic>scope testing</topic><topic>Significance level</topic><topic>Social science research</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Studies</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poe, Gregory L.</creatorcontrib><creatorcontrib>Giraud, Kelly L.</creatorcontrib><creatorcontrib>Loomis, John B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>American journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poe, Gregory L.</au><au>Giraud, Kelly L.</au><au>Loomis, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Methods for Measuring the Difference of Empirical Distributions</atitle><jtitle>American journal of agricultural economics</jtitle><stitle>American Journal of Agricultural Economics</stitle><addtitle>American Journal of Agricultural Economics</addtitle><date>2005-05</date><risdate>2005</risdate><volume>87</volume><issue>2</issue><spage>353</spage><epage>365</epage><pages>353-365</pages><issn>0002-9092</issn><eissn>1467-8276</eissn><coden>AJAEBA</coden><abstract>This paper presents a simple computational method for measuring the difference of independent empirical distributions estimated by bootstrapping or other resampling approaches. Using data from a field test of external scope in contingent valuation, this complete combinatorial method is compared with other methods (empirical convolutions, repeated sampling, normality, nonoverlapping confidence intervals) that have been suggested in the literature. Tradeoffs between methods are discussed in terms of programming complexity, time and computer resources required, bias, and the precision of the estimate.</abstract><cop>Malden</cop><pub>Oxford University Press</pub><doi>10.1111/j.1467-8276.2005.00727.x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9092 |
ispartof | American journal of agricultural economics, 2005-05, Vol.87 (2), p.353-365 |
issn | 0002-9092 1467-8276 |
language | eng |
recordid | cdi_proquest_miscellaneous_38172149 |
source | EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection; BSC - Ebsco (Business Source Ultimate) |
subjects | Agricultural economics Agricultural management Applied economics Bootstrap mechanism Bootstrap method bootstrapping C150 Combinatorial analysis Computation Computer programs Confidence interval Confidence intervals contingent valuation Data analysis Economic models Economic theory Economics Empirical analysis Empirical research Endangered species Estimation methods Land economics measuring differences of distributions Methodology Nonparametric models Polynomials Programming Q510 Q570 Samples Sampling Scientific method scope testing Significance level Social science research Statistical analysis Statistical models Studies Valuation |
title | Computational Methods for Measuring the Difference of Empirical Distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Methods%20for%20Measuring%20the%20Difference%20of%20Empirical%20Distributions&rft.jtitle=American%20journal%20of%20agricultural%20economics&rft.au=Poe,%20Gregory%20L.&rft.date=2005-05&rft.volume=87&rft.issue=2&rft.spage=353&rft.epage=365&rft.pages=353-365&rft.issn=0002-9092&rft.eissn=1467-8276&rft.coden=AJAEBA&rft_id=info:doi/10.1111/j.1467-8276.2005.00727.x&rft_dat=%3Cjstor_proqu%3E3697850%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c651X-27f8c66c8d34f1729b4c4061a17e2ebf0bd4eae36608d88876cf570aa6173bf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=233167870&rft_id=info:pmid/&rft_jstor_id=3697850&rft_oup_id=10.1111/j.1467-8276.2005.00727.x&rfr_iscdi=true |