Loading…
Testing for Localization Using Micro-Geographic Data
To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departu...
Saved in:
Published in: | The Review of economic studies 2005-10, Vol.72 (4), p.1077-1106 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23 |
---|---|
cites | cdi_FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23 |
container_end_page | 1106 |
container_issue | 4 |
container_start_page | 1077 |
container_title | The Review of economic studies |
container_volume | 72 |
creator | Duranton, Gilles Overman, Henry G. |
description | To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departures from randomness. In addition, we treat space as continuous instead of using an arbitrary collection of geographical units. This avoids problems relating to scale and borders. We apply these tests to an exhaustive U.K. data-set. For four-digit industries, we find that (i) 52% of them are localized at a 5% confidence level, (ii) localization mostly takes place at small scales below 50 km, (iii) the degree of localization is very skewed, and (iv) industries follow broad sectoral patterns with respect to localization. Depending on the industry, smaller establishments can be the main drivers of both localization and dispersion. Three-digit sectors show similar patterns of localization at small scales as well as a tendency to localize at medium scales. |
doi_str_mv | 10.1111/0034-6527.00362 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38198326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3700701</jstor_id><sourcerecordid>3700701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUwszBEDGxp7diOnREVaJHKx9CKisVyHLu4tHGxUwn49TgEdeCWO9373OnuBeAcwQGKMYQQkzSnGRvEKs8OQA-RnKUFZotD0Nurx-AkhBWEEHHOeoDMdGhsvUyM88nUKbm237Kxrk7moW0_WOVdOtZu6eX2zarkRjbyFBwZuQ767C_3wfzudjaapNOn8f3oepoqSmGTkooyKbkhmZIFlVWGiSkpzbmpFGQVqkqmoeGm5JJLVpWFVqrISaEyZGCL98FVt3fr3ccuHio2Nii9Xstau10QmKOC4yyP4OU_cOV2vo63iQwSjEnBSISGHRQ_CsFrI7bebqT_EgiK1kLRmiRak8SvhXHioptYhcb5PY4ZhAyiKKedbEOjP_ey9O8iZ5hRMVm8ikX-PIEvN49ihH8Aatl7cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204334974</pqid></control><display><type>article</type><title>Testing for Localization Using Micro-Geographic Data</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM global</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>Oxford Journals Online</source><source>EBSCOHost: Business Source Ultimate</source><creator>Duranton, Gilles ; Overman, Henry G.</creator><creatorcontrib>Duranton, Gilles ; Overman, Henry G.</creatorcontrib><description>To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departures from randomness. In addition, we treat space as continuous instead of using an arbitrary collection of geographical units. This avoids problems relating to scale and borders. We apply these tests to an exhaustive U.K. data-set. For four-digit industries, we find that (i) 52% of them are localized at a 5% confidence level, (ii) localization mostly takes place at small scales below 50 km, (iii) the degree of localization is very skewed, and (iv) industries follow broad sectoral patterns with respect to localization. Depending on the industry, smaller establishments can be the main drivers of both localization and dispersion. Three-digit sectors show similar patterns of localization at small scales as well as a tendency to localize at medium scales.</description><identifier>ISSN: 0034-6527</identifier><identifier>EISSN: 1467-937X</identifier><identifier>DOI: 10.1111/0034-6527.00362</identifier><language>eng</language><publisher>Oxford: Wiley-Blackwell</publisher><subject>Data analysis ; Distribution ; Empirical research ; Employment ; Geodetic position ; Geography ; Industrial concentration ; Industrial plants ; Industrial sectors ; Industrial sites ; Industry ; Industry analysis ; Leather industry ; Localization ; Location analysis ; Location of enterprises ; Location of industry ; Manufacturing ; Manufacturing industries ; R11 ; R23 ; Regional economics ; Space economics ; Spatial models ; Statistical analysis ; Statistical significance ; Studies ; Textile industry ; United Kingdom</subject><ispartof>The Review of economic studies, 2005-10, Vol.72 (4), p.1077-1106</ispartof><rights>Copyright 2004 The Review of Economic Studies Limited</rights><rights>The Review of Economic Studies Limited, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23</citedby><cites>FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/204334974/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/204334974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,12826,21373,27901,27902,33200,33201,33588,33589,36037,36038,43709,44339,58213,58446,74192,74865</link.rule.ids></links><search><creatorcontrib>Duranton, Gilles</creatorcontrib><creatorcontrib>Overman, Henry G.</creatorcontrib><title>Testing for Localization Using Micro-Geographic Data</title><title>The Review of economic studies</title><addtitle>The Review of Economic Studies</addtitle><description>To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departures from randomness. In addition, we treat space as continuous instead of using an arbitrary collection of geographical units. This avoids problems relating to scale and borders. We apply these tests to an exhaustive U.K. data-set. For four-digit industries, we find that (i) 52% of them are localized at a 5% confidence level, (ii) localization mostly takes place at small scales below 50 km, (iii) the degree of localization is very skewed, and (iv) industries follow broad sectoral patterns with respect to localization. Depending on the industry, smaller establishments can be the main drivers of both localization and dispersion. Three-digit sectors show similar patterns of localization at small scales as well as a tendency to localize at medium scales.</description><subject>Data analysis</subject><subject>Distribution</subject><subject>Empirical research</subject><subject>Employment</subject><subject>Geodetic position</subject><subject>Geography</subject><subject>Industrial concentration</subject><subject>Industrial plants</subject><subject>Industrial sectors</subject><subject>Industrial sites</subject><subject>Industry</subject><subject>Industry analysis</subject><subject>Leather industry</subject><subject>Localization</subject><subject>Location analysis</subject><subject>Location of enterprises</subject><subject>Location of industry</subject><subject>Manufacturing</subject><subject>Manufacturing industries</subject><subject>R11</subject><subject>R23</subject><subject>Regional economics</subject><subject>Space economics</subject><subject>Spatial models</subject><subject>Statistical analysis</subject><subject>Statistical significance</subject><subject>Studies</subject><subject>Textile industry</subject><subject>United Kingdom</subject><issn>0034-6527</issn><issn>1467-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNpdkD1PwzAQhi0EEqUwszBEDGxp7diOnREVaJHKx9CKisVyHLu4tHGxUwn49TgEdeCWO9373OnuBeAcwQGKMYQQkzSnGRvEKs8OQA-RnKUFZotD0Nurx-AkhBWEEHHOeoDMdGhsvUyM88nUKbm237Kxrk7moW0_WOVdOtZu6eX2zarkRjbyFBwZuQ767C_3wfzudjaapNOn8f3oepoqSmGTkooyKbkhmZIFlVWGiSkpzbmpFGQVqkqmoeGm5JJLVpWFVqrISaEyZGCL98FVt3fr3ccuHio2Nii9Xstau10QmKOC4yyP4OU_cOV2vo63iQwSjEnBSISGHRQ_CsFrI7bebqT_EgiK1kLRmiRak8SvhXHioptYhcb5PY4ZhAyiKKedbEOjP_ey9O8iZ5hRMVm8ikX-PIEvN49ihH8Aatl7cA</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Duranton, Gilles</creator><creator>Overman, Henry G.</creator><general>Wiley-Blackwell</general><general>Review of Economic Studies Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>POGQB</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PRQQA</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200510</creationdate><title>Testing for Localization Using Micro-Geographic Data</title><author>Duranton, Gilles ; Overman, Henry G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data analysis</topic><topic>Distribution</topic><topic>Empirical research</topic><topic>Employment</topic><topic>Geodetic position</topic><topic>Geography</topic><topic>Industrial concentration</topic><topic>Industrial plants</topic><topic>Industrial sectors</topic><topic>Industrial sites</topic><topic>Industry</topic><topic>Industry analysis</topic><topic>Leather industry</topic><topic>Localization</topic><topic>Location analysis</topic><topic>Location of enterprises</topic><topic>Location of industry</topic><topic>Manufacturing</topic><topic>Manufacturing industries</topic><topic>R11</topic><topic>R23</topic><topic>Regional economics</topic><topic>Space economics</topic><topic>Spatial models</topic><topic>Statistical analysis</topic><topic>Statistical significance</topic><topic>Studies</topic><topic>Textile industry</topic><topic>United Kingdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duranton, Gilles</creatorcontrib><creatorcontrib>Overman, Henry G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>ProQuest research library</collection><collection>Social Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest Sociology & Social Sciences Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Social Sciences</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The Review of economic studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duranton, Gilles</au><au>Overman, Henry G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for Localization Using Micro-Geographic Data</atitle><jtitle>The Review of economic studies</jtitle><addtitle>The Review of Economic Studies</addtitle><date>2005-10</date><risdate>2005</risdate><volume>72</volume><issue>4</issue><spage>1077</spage><epage>1106</epage><pages>1077-1106</pages><issn>0034-6527</issn><eissn>1467-937X</eissn><abstract>To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departures from randomness. In addition, we treat space as continuous instead of using an arbitrary collection of geographical units. This avoids problems relating to scale and borders. We apply these tests to an exhaustive U.K. data-set. For four-digit industries, we find that (i) 52% of them are localized at a 5% confidence level, (ii) localization mostly takes place at small scales below 50 km, (iii) the degree of localization is very skewed, and (iv) industries follow broad sectoral patterns with respect to localization. Depending on the industry, smaller establishments can be the main drivers of both localization and dispersion. Three-digit sectors show similar patterns of localization at small scales as well as a tendency to localize at medium scales.</abstract><cop>Oxford</cop><pub>Wiley-Blackwell</pub><doi>10.1111/0034-6527.00362</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6527 |
ispartof | The Review of economic studies, 2005-10, Vol.72 (4), p.1077-1106 |
issn | 0034-6527 1467-937X |
language | eng |
recordid | cdi_proquest_miscellaneous_38198326 |
source | International Bibliography of the Social Sciences (IBSS); ABI/INFORM global; EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; Oxford Journals Online; EBSCOHost: Business Source Ultimate |
subjects | Data analysis Distribution Empirical research Employment Geodetic position Geography Industrial concentration Industrial plants Industrial sectors Industrial sites Industry Industry analysis Leather industry Localization Location analysis Location of enterprises Location of industry Manufacturing Manufacturing industries R11 R23 Regional economics Space economics Spatial models Statistical analysis Statistical significance Studies Textile industry United Kingdom |
title | Testing for Localization Using Micro-Geographic Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20Localization%20Using%20Micro-Geographic%20Data&rft.jtitle=The%20Review%20of%20economic%20studies&rft.au=Duranton,%20Gilles&rft.date=2005-10&rft.volume=72&rft.issue=4&rft.spage=1077&rft.epage=1106&rft.pages=1077-1106&rft.issn=0034-6527&rft.eissn=1467-937X&rft_id=info:doi/10.1111/0034-6527.00362&rft_dat=%3Cjstor_proqu%3E3700701%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204334974&rft_id=info:pmid/&rft_jstor_id=3700701&rfr_iscdi=true |