Loading…

Testing for Localization Using Micro-Geographic Data

To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departu...

Full description

Saved in:
Bibliographic Details
Published in:The Review of economic studies 2005-10, Vol.72 (4), p.1077-1106
Main Authors: Duranton, Gilles, Overman, Henry G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23
cites cdi_FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23
container_end_page 1106
container_issue 4
container_start_page 1077
container_title The Review of economic studies
container_volume 72
creator Duranton, Gilles
Overman, Henry G.
description To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departures from randomness. In addition, we treat space as continuous instead of using an arbitrary collection of geographical units. This avoids problems relating to scale and borders. We apply these tests to an exhaustive U.K. data-set. For four-digit industries, we find that (i) 52% of them are localized at a 5% confidence level, (ii) localization mostly takes place at small scales below 50 km, (iii) the degree of localization is very skewed, and (iv) industries follow broad sectoral patterns with respect to localization. Depending on the industry, smaller establishments can be the main drivers of both localization and dispersion. Three-digit sectors show similar patterns of localization at small scales as well as a tendency to localize at medium scales.
doi_str_mv 10.1111/0034-6527.00362
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38198326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3700701</jstor_id><sourcerecordid>3700701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUwszBEDGxp7diOnREVaJHKx9CKisVyHLu4tHGxUwn49TgEdeCWO9373OnuBeAcwQGKMYQQkzSnGRvEKs8OQA-RnKUFZotD0Nurx-AkhBWEEHHOeoDMdGhsvUyM88nUKbm237Kxrk7moW0_WOVdOtZu6eX2zarkRjbyFBwZuQ767C_3wfzudjaapNOn8f3oepoqSmGTkooyKbkhmZIFlVWGiSkpzbmpFGQVqkqmoeGm5JJLVpWFVqrISaEyZGCL98FVt3fr3ccuHio2Nii9Xstau10QmKOC4yyP4OU_cOV2vo63iQwSjEnBSISGHRQ_CsFrI7bebqT_EgiK1kLRmiRak8SvhXHioptYhcb5PY4ZhAyiKKedbEOjP_ey9O8iZ5hRMVm8ikX-PIEvN49ihH8Aatl7cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204334974</pqid></control><display><type>article</type><title>Testing for Localization Using Micro-Geographic Data</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM global</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>Oxford Journals Online</source><source>EBSCOHost: Business Source Ultimate</source><creator>Duranton, Gilles ; Overman, Henry G.</creator><creatorcontrib>Duranton, Gilles ; Overman, Henry G.</creatorcontrib><description>To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departures from randomness. In addition, we treat space as continuous instead of using an arbitrary collection of geographical units. This avoids problems relating to scale and borders. We apply these tests to an exhaustive U.K. data-set. For four-digit industries, we find that (i) 52% of them are localized at a 5% confidence level, (ii) localization mostly takes place at small scales below 50 km, (iii) the degree of localization is very skewed, and (iv) industries follow broad sectoral patterns with respect to localization. Depending on the industry, smaller establishments can be the main drivers of both localization and dispersion. Three-digit sectors show similar patterns of localization at small scales as well as a tendency to localize at medium scales.</description><identifier>ISSN: 0034-6527</identifier><identifier>EISSN: 1467-937X</identifier><identifier>DOI: 10.1111/0034-6527.00362</identifier><language>eng</language><publisher>Oxford: Wiley-Blackwell</publisher><subject>Data analysis ; Distribution ; Empirical research ; Employment ; Geodetic position ; Geography ; Industrial concentration ; Industrial plants ; Industrial sectors ; Industrial sites ; Industry ; Industry analysis ; Leather industry ; Localization ; Location analysis ; Location of enterprises ; Location of industry ; Manufacturing ; Manufacturing industries ; R11 ; R23 ; Regional economics ; Space economics ; Spatial models ; Statistical analysis ; Statistical significance ; Studies ; Textile industry ; United Kingdom</subject><ispartof>The Review of economic studies, 2005-10, Vol.72 (4), p.1077-1106</ispartof><rights>Copyright 2004 The Review of Economic Studies Limited</rights><rights>The Review of Economic Studies Limited, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23</citedby><cites>FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/204334974/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/204334974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,12826,21373,27901,27902,33200,33201,33588,33589,36037,36038,43709,44339,58213,58446,74192,74865</link.rule.ids></links><search><creatorcontrib>Duranton, Gilles</creatorcontrib><creatorcontrib>Overman, Henry G.</creatorcontrib><title>Testing for Localization Using Micro-Geographic Data</title><title>The Review of economic studies</title><addtitle>The Review of Economic Studies</addtitle><description>To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departures from randomness. In addition, we treat space as continuous instead of using an arbitrary collection of geographical units. This avoids problems relating to scale and borders. We apply these tests to an exhaustive U.K. data-set. For four-digit industries, we find that (i) 52% of them are localized at a 5% confidence level, (ii) localization mostly takes place at small scales below 50 km, (iii) the degree of localization is very skewed, and (iv) industries follow broad sectoral patterns with respect to localization. Depending on the industry, smaller establishments can be the main drivers of both localization and dispersion. Three-digit sectors show similar patterns of localization at small scales as well as a tendency to localize at medium scales.</description><subject>Data analysis</subject><subject>Distribution</subject><subject>Empirical research</subject><subject>Employment</subject><subject>Geodetic position</subject><subject>Geography</subject><subject>Industrial concentration</subject><subject>Industrial plants</subject><subject>Industrial sectors</subject><subject>Industrial sites</subject><subject>Industry</subject><subject>Industry analysis</subject><subject>Leather industry</subject><subject>Localization</subject><subject>Location analysis</subject><subject>Location of enterprises</subject><subject>Location of industry</subject><subject>Manufacturing</subject><subject>Manufacturing industries</subject><subject>R11</subject><subject>R23</subject><subject>Regional economics</subject><subject>Space economics</subject><subject>Spatial models</subject><subject>Statistical analysis</subject><subject>Statistical significance</subject><subject>Studies</subject><subject>Textile industry</subject><subject>United Kingdom</subject><issn>0034-6527</issn><issn>1467-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNpdkD1PwzAQhi0EEqUwszBEDGxp7diOnREVaJHKx9CKisVyHLu4tHGxUwn49TgEdeCWO9373OnuBeAcwQGKMYQQkzSnGRvEKs8OQA-RnKUFZotD0Nurx-AkhBWEEHHOeoDMdGhsvUyM88nUKbm237Kxrk7moW0_WOVdOtZu6eX2zarkRjbyFBwZuQ767C_3wfzudjaapNOn8f3oepoqSmGTkooyKbkhmZIFlVWGiSkpzbmpFGQVqkqmoeGm5JJLVpWFVqrISaEyZGCL98FVt3fr3ccuHio2Nii9Xstau10QmKOC4yyP4OU_cOV2vo63iQwSjEnBSISGHRQ_CsFrI7bebqT_EgiK1kLRmiRak8SvhXHioptYhcb5PY4ZhAyiKKedbEOjP_ey9O8iZ5hRMVm8ikX-PIEvN49ihH8Aatl7cA</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Duranton, Gilles</creator><creator>Overman, Henry G.</creator><general>Wiley-Blackwell</general><general>Review of Economic Studies Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>POGQB</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PRQQA</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200510</creationdate><title>Testing for Localization Using Micro-Geographic Data</title><author>Duranton, Gilles ; Overman, Henry G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Data analysis</topic><topic>Distribution</topic><topic>Empirical research</topic><topic>Employment</topic><topic>Geodetic position</topic><topic>Geography</topic><topic>Industrial concentration</topic><topic>Industrial plants</topic><topic>Industrial sectors</topic><topic>Industrial sites</topic><topic>Industry</topic><topic>Industry analysis</topic><topic>Leather industry</topic><topic>Localization</topic><topic>Location analysis</topic><topic>Location of enterprises</topic><topic>Location of industry</topic><topic>Manufacturing</topic><topic>Manufacturing industries</topic><topic>R11</topic><topic>R23</topic><topic>Regional economics</topic><topic>Space economics</topic><topic>Spatial models</topic><topic>Statistical analysis</topic><topic>Statistical significance</topic><topic>Studies</topic><topic>Textile industry</topic><topic>United Kingdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duranton, Gilles</creatorcontrib><creatorcontrib>Overman, Henry G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>ProQuest research library</collection><collection>Social Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest Sociology &amp; Social Sciences Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Social Sciences</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The Review of economic studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duranton, Gilles</au><au>Overman, Henry G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for Localization Using Micro-Geographic Data</atitle><jtitle>The Review of economic studies</jtitle><addtitle>The Review of Economic Studies</addtitle><date>2005-10</date><risdate>2005</risdate><volume>72</volume><issue>4</issue><spage>1077</spage><epage>1106</epage><pages>1077-1106</pages><issn>0034-6527</issn><eissn>1467-937X</eissn><abstract>To study the detailed location patterns of industries, and particularly the tendency for industries to cluster relative to overall manufacturing, we develop distance-based tests of localization. In contrast to previous studies, our approach allows us to assess the statistical significance of departures from randomness. In addition, we treat space as continuous instead of using an arbitrary collection of geographical units. This avoids problems relating to scale and borders. We apply these tests to an exhaustive U.K. data-set. For four-digit industries, we find that (i) 52% of them are localized at a 5% confidence level, (ii) localization mostly takes place at small scales below 50 km, (iii) the degree of localization is very skewed, and (iv) industries follow broad sectoral patterns with respect to localization. Depending on the industry, smaller establishments can be the main drivers of both localization and dispersion. Three-digit sectors show similar patterns of localization at small scales as well as a tendency to localize at medium scales.</abstract><cop>Oxford</cop><pub>Wiley-Blackwell</pub><doi>10.1111/0034-6527.00362</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6527
ispartof The Review of economic studies, 2005-10, Vol.72 (4), p.1077-1106
issn 0034-6527
1467-937X
language eng
recordid cdi_proquest_miscellaneous_38198326
source International Bibliography of the Social Sciences (IBSS); ABI/INFORM global; EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; Oxford Journals Online; EBSCOHost: Business Source Ultimate
subjects Data analysis
Distribution
Empirical research
Employment
Geodetic position
Geography
Industrial concentration
Industrial plants
Industrial sectors
Industrial sites
Industry
Industry analysis
Leather industry
Localization
Location analysis
Location of enterprises
Location of industry
Manufacturing
Manufacturing industries
R11
R23
Regional economics
Space economics
Spatial models
Statistical analysis
Statistical significance
Studies
Textile industry
United Kingdom
title Testing for Localization Using Micro-Geographic Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20Localization%20Using%20Micro-Geographic%20Data&rft.jtitle=The%20Review%20of%20economic%20studies&rft.au=Duranton,%20Gilles&rft.date=2005-10&rft.volume=72&rft.issue=4&rft.spage=1077&rft.epage=1106&rft.pages=1077-1106&rft.issn=0034-6527&rft.eissn=1467-937X&rft_id=info:doi/10.1111/0034-6527.00362&rft_dat=%3Cjstor_proqu%3E3700701%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-4d57aa8f42ca95ad234fb5568fdc07d1db7e0f8fb8a8a7db9ecc9649c21f0ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204334974&rft_id=info:pmid/&rft_jstor_id=3700701&rfr_iscdi=true