Loading…

Joint modelling of event counts and survival times

In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival...

Full description

Saved in:
Bibliographic Details
Published in:Applied statistics 2006-01, Vol.55 (1), p.31-39
Main Authors: Cowling, B. J., Hutton, J. L., Shaw, J. E. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3
cites cdi_FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3
container_end_page 39
container_issue 1
container_start_page 31
container_title Applied statistics
container_volume 55
creator Cowling, B. J.
Hutton, J. L.
Shaw, J. E. H.
description In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect.
doi_str_mv 10.1111/j.1467-9876.2005.00529.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38218668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3592586</jstor_id><sourcerecordid>3592586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3</originalsourceid><addsrcrecordid>eNqNUsuO1DAQjBBIDAt_wCFCgluCH_EjBw5ogF3QalmxCxxbjuOAQyYe7GSY-Xt6yGqQOGGp3C13VatUcpbllJQUz8u-pJVURa2VLBkhokSwutzfy1anwf1sRQgXRc1E9TB7lFJP8FBSrTL2IfhxyjehdcPgx2956HK3c_hkwzxOKTdjm6c57vzODPnkNy49zh50ZkjuyV09yz6_e3u7viguP56_X7--LKxQoi46UilpNbOV1aZhtamtFh3Rum0ryznjpmWCSl63TjeiZV3HJFNakUYx0lSOn2Uvlr3bGH7OLk2w8cmiTTO6MCfgmlEtpUbis3-IfZjjiN6AEapIRRlHkl5INoaUoutgG_3GxANQAsckoYdjYHAMDI5Jwp8kYY_Si0Ua3dbZk64ZTB9iShZ2wI0QeB0QKJVYPIIitgiOTQ3fpw2uen5n1SRrhi6a0fr014oSklMhkPdq4f3ygzv8t1X4dHOzxg71Txd9n6YQT3ou8AtoieNiGfs0uf1pbOIPkIorAV-vzkFdX7-5vaq-gOC_ASpCti4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201704123</pqid></control><display><type>article</type><title>Joint modelling of event counts and survival times</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Cowling, B. J. ; Hutton, J. L. ; Shaw, J. E. H.</creator><creatorcontrib>Cowling, B. J. ; Hutton, J. L. ; Shaw, J. E. H.</creatorcontrib><description>In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/j.1467-9876.2005.00529.x</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applications ; Binomials ; Censored point process ; Data analysis ; Epilepsy ; Event rate ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Illness ; Mathematics ; Maximum likelihood estimation ; Medical research ; Methodology ; Modeling ; Nonparametric inference ; Parametric models ; Poisson process ; Probability and statistics ; Random allocation ; Randomized algorithms ; Recurrent event ; Regression coefficients ; Sciences and techniques of general use ; Seizures ; Standard error ; Statistical analysis ; Statistical methods ; Statistical models ; Statistics ; Studies ; Survival ; Survival analysis ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Applied statistics, 2006-01, Vol.55 (1), p.31-39</ispartof><rights>Copyright 2006 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2006 INIST-CNRS</rights><rights>2006 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3</citedby><cites>FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3592586$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3592586$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,33200,33201,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17563155$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssc/v_3a55_3ay_3a2006_3ai_3a1_3ap_3a31-39.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Cowling, B. J.</creatorcontrib><creatorcontrib>Hutton, J. L.</creatorcontrib><creatorcontrib>Shaw, J. E. H.</creatorcontrib><title>Joint modelling of event counts and survival times</title><title>Applied statistics</title><description>In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect.</description><subject>Applications</subject><subject>Binomials</subject><subject>Censored point process</subject><subject>Data analysis</subject><subject>Epilepsy</subject><subject>Event rate</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Illness</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Medical research</subject><subject>Methodology</subject><subject>Modeling</subject><subject>Nonparametric inference</subject><subject>Parametric models</subject><subject>Poisson process</subject><subject>Probability and statistics</subject><subject>Random allocation</subject><subject>Randomized algorithms</subject><subject>Recurrent event</subject><subject>Regression coefficients</subject><subject>Sciences and techniques of general use</subject><subject>Seizures</subject><subject>Standard error</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Studies</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNUsuO1DAQjBBIDAt_wCFCgluCH_EjBw5ogF3QalmxCxxbjuOAQyYe7GSY-Xt6yGqQOGGp3C13VatUcpbllJQUz8u-pJVURa2VLBkhokSwutzfy1anwf1sRQgXRc1E9TB7lFJP8FBSrTL2IfhxyjehdcPgx2956HK3c_hkwzxOKTdjm6c57vzODPnkNy49zh50ZkjuyV09yz6_e3u7viguP56_X7--LKxQoi46UilpNbOV1aZhtamtFh3Rum0ryznjpmWCSl63TjeiZV3HJFNakUYx0lSOn2Uvlr3bGH7OLk2w8cmiTTO6MCfgmlEtpUbis3-IfZjjiN6AEapIRRlHkl5INoaUoutgG_3GxANQAsckoYdjYHAMDI5Jwp8kYY_Si0Ua3dbZk64ZTB9iShZ2wI0QeB0QKJVYPIIitgiOTQ3fpw2uen5n1SRrhi6a0fr014oSklMhkPdq4f3ygzv8t1X4dHOzxg71Txd9n6YQT3ou8AtoieNiGfs0uf1pbOIPkIorAV-vzkFdX7-5vaq-gOC_ASpCti4</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Cowling, B. J.</creator><creator>Hutton, J. L.</creator><creator>Shaw, J. E. H.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200601</creationdate><title>Joint modelling of event counts and survival times</title><author>Cowling, B. J. ; Hutton, J. L. ; Shaw, J. E. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Binomials</topic><topic>Censored point process</topic><topic>Data analysis</topic><topic>Epilepsy</topic><topic>Event rate</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Illness</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Medical research</topic><topic>Methodology</topic><topic>Modeling</topic><topic>Nonparametric inference</topic><topic>Parametric models</topic><topic>Poisson process</topic><topic>Probability and statistics</topic><topic>Random allocation</topic><topic>Randomized algorithms</topic><topic>Recurrent event</topic><topic>Regression coefficients</topic><topic>Sciences and techniques of general use</topic><topic>Seizures</topic><topic>Standard error</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Studies</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cowling, B. J.</creatorcontrib><creatorcontrib>Hutton, J. L.</creatorcontrib><creatorcontrib>Shaw, J. E. H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cowling, B. J.</au><au>Hutton, J. L.</au><au>Shaw, J. E. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint modelling of event counts and survival times</atitle><jtitle>Applied statistics</jtitle><date>2006-01</date><risdate>2006</risdate><volume>55</volume><issue>1</issue><spage>31</spage><epage>39</epage><pages>31-39</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9876.2005.00529.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Applied statistics, 2006-01, Vol.55 (1), p.31-39
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_miscellaneous_38218668
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection
subjects Applications
Binomials
Censored point process
Data analysis
Epilepsy
Event rate
Exact sciences and technology
Global analysis, analysis on manifolds
Illness
Mathematics
Maximum likelihood estimation
Medical research
Methodology
Modeling
Nonparametric inference
Parametric models
Poisson process
Probability and statistics
Random allocation
Randomized algorithms
Recurrent event
Regression coefficients
Sciences and techniques of general use
Seizures
Standard error
Statistical analysis
Statistical methods
Statistical models
Statistics
Studies
Survival
Survival analysis
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Joint modelling of event counts and survival times
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20modelling%20of%20event%20counts%20and%20survival%20times&rft.jtitle=Applied%20statistics&rft.au=Cowling,%20B.%20J.&rft.date=2006-01&rft.volume=55&rft.issue=1&rft.spage=31&rft.epage=39&rft.pages=31-39&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.1111/j.1467-9876.2005.00529.x&rft_dat=%3Cjstor_proqu%3E3592586%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201704123&rft_id=info:pmid/&rft_jstor_id=3592586&rfr_iscdi=true