Loading…
Joint modelling of event counts and survival times
In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival...
Saved in:
Published in: | Applied statistics 2006-01, Vol.55 (1), p.31-39 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3 |
container_end_page | 39 |
container_issue | 1 |
container_start_page | 31 |
container_title | Applied statistics |
container_volume | 55 |
creator | Cowling, B. J. Hutton, J. L. Shaw, J. E. H. |
description | In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect. |
doi_str_mv | 10.1111/j.1467-9876.2005.00529.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38218668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3592586</jstor_id><sourcerecordid>3592586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3</originalsourceid><addsrcrecordid>eNqNUsuO1DAQjBBIDAt_wCFCgluCH_EjBw5ogF3QalmxCxxbjuOAQyYe7GSY-Xt6yGqQOGGp3C13VatUcpbllJQUz8u-pJVURa2VLBkhokSwutzfy1anwf1sRQgXRc1E9TB7lFJP8FBSrTL2IfhxyjehdcPgx2956HK3c_hkwzxOKTdjm6c57vzODPnkNy49zh50ZkjuyV09yz6_e3u7viguP56_X7--LKxQoi46UilpNbOV1aZhtamtFh3Rum0ryznjpmWCSl63TjeiZV3HJFNakUYx0lSOn2Uvlr3bGH7OLk2w8cmiTTO6MCfgmlEtpUbis3-IfZjjiN6AEapIRRlHkl5INoaUoutgG_3GxANQAsckoYdjYHAMDI5Jwp8kYY_Si0Ua3dbZk64ZTB9iShZ2wI0QeB0QKJVYPIIitgiOTQ3fpw2uen5n1SRrhi6a0fr014oSklMhkPdq4f3ygzv8t1X4dHOzxg71Txd9n6YQT3ou8AtoieNiGfs0uf1pbOIPkIorAV-vzkFdX7-5vaq-gOC_ASpCti4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201704123</pqid></control><display><type>article</type><title>Joint modelling of event counts and survival times</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Cowling, B. J. ; Hutton, J. L. ; Shaw, J. E. H.</creator><creatorcontrib>Cowling, B. J. ; Hutton, J. L. ; Shaw, J. E. H.</creatorcontrib><description>In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/j.1467-9876.2005.00529.x</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applications ; Binomials ; Censored point process ; Data analysis ; Epilepsy ; Event rate ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Illness ; Mathematics ; Maximum likelihood estimation ; Medical research ; Methodology ; Modeling ; Nonparametric inference ; Parametric models ; Poisson process ; Probability and statistics ; Random allocation ; Randomized algorithms ; Recurrent event ; Regression coefficients ; Sciences and techniques of general use ; Seizures ; Standard error ; Statistical analysis ; Statistical methods ; Statistical models ; Statistics ; Studies ; Survival ; Survival analysis ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Applied statistics, 2006-01, Vol.55 (1), p.31-39</ispartof><rights>Copyright 2006 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2006 INIST-CNRS</rights><rights>2006 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3</citedby><cites>FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3592586$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3592586$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,33200,33201,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17563155$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssc/v_3a55_3ay_3a2006_3ai_3a1_3ap_3a31-39.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Cowling, B. J.</creatorcontrib><creatorcontrib>Hutton, J. L.</creatorcontrib><creatorcontrib>Shaw, J. E. H.</creatorcontrib><title>Joint modelling of event counts and survival times</title><title>Applied statistics</title><description>In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect.</description><subject>Applications</subject><subject>Binomials</subject><subject>Censored point process</subject><subject>Data analysis</subject><subject>Epilepsy</subject><subject>Event rate</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Illness</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Medical research</subject><subject>Methodology</subject><subject>Modeling</subject><subject>Nonparametric inference</subject><subject>Parametric models</subject><subject>Poisson process</subject><subject>Probability and statistics</subject><subject>Random allocation</subject><subject>Randomized algorithms</subject><subject>Recurrent event</subject><subject>Regression coefficients</subject><subject>Sciences and techniques of general use</subject><subject>Seizures</subject><subject>Standard error</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Studies</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqNUsuO1DAQjBBIDAt_wCFCgluCH_EjBw5ogF3QalmxCxxbjuOAQyYe7GSY-Xt6yGqQOGGp3C13VatUcpbllJQUz8u-pJVURa2VLBkhokSwutzfy1anwf1sRQgXRc1E9TB7lFJP8FBSrTL2IfhxyjehdcPgx2956HK3c_hkwzxOKTdjm6c57vzODPnkNy49zh50ZkjuyV09yz6_e3u7viguP56_X7--LKxQoi46UilpNbOV1aZhtamtFh3Rum0ryznjpmWCSl63TjeiZV3HJFNakUYx0lSOn2Uvlr3bGH7OLk2w8cmiTTO6MCfgmlEtpUbis3-IfZjjiN6AEapIRRlHkl5INoaUoutgG_3GxANQAsckoYdjYHAMDI5Jwp8kYY_Si0Ua3dbZk64ZTB9iShZ2wI0QeB0QKJVYPIIitgiOTQ3fpw2uen5n1SRrhi6a0fr014oSklMhkPdq4f3ygzv8t1X4dHOzxg71Txd9n6YQT3ou8AtoieNiGfs0uf1pbOIPkIorAV-vzkFdX7-5vaq-gOC_ASpCti4</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Cowling, B. J.</creator><creator>Hutton, J. L.</creator><creator>Shaw, J. E. H.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200601</creationdate><title>Joint modelling of event counts and survival times</title><author>Cowling, B. J. ; Hutton, J. L. ; Shaw, J. E. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Binomials</topic><topic>Censored point process</topic><topic>Data analysis</topic><topic>Epilepsy</topic><topic>Event rate</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Illness</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Medical research</topic><topic>Methodology</topic><topic>Modeling</topic><topic>Nonparametric inference</topic><topic>Parametric models</topic><topic>Poisson process</topic><topic>Probability and statistics</topic><topic>Random allocation</topic><topic>Randomized algorithms</topic><topic>Recurrent event</topic><topic>Regression coefficients</topic><topic>Sciences and techniques of general use</topic><topic>Seizures</topic><topic>Standard error</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Studies</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cowling, B. J.</creatorcontrib><creatorcontrib>Hutton, J. L.</creatorcontrib><creatorcontrib>Shaw, J. E. H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cowling, B. J.</au><au>Hutton, J. L.</au><au>Shaw, J. E. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint modelling of event counts and survival times</atitle><jtitle>Applied statistics</jtitle><date>2006-01</date><risdate>2006</risdate><volume>55</volume><issue>1</issue><spage>31</spage><epage>39</epage><pages>31-39</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9876.2005.00529.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Applied statistics, 2006-01, Vol.55 (1), p.31-39 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_proquest_miscellaneous_38218668 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection |
subjects | Applications Binomials Censored point process Data analysis Epilepsy Event rate Exact sciences and technology Global analysis, analysis on manifolds Illness Mathematics Maximum likelihood estimation Medical research Methodology Modeling Nonparametric inference Parametric models Poisson process Probability and statistics Random allocation Randomized algorithms Recurrent event Regression coefficients Sciences and techniques of general use Seizures Standard error Statistical analysis Statistical methods Statistical models Statistics Studies Survival Survival analysis Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Joint modelling of event counts and survival times |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20modelling%20of%20event%20counts%20and%20survival%20times&rft.jtitle=Applied%20statistics&rft.au=Cowling,%20B.%20J.&rft.date=2006-01&rft.volume=55&rft.issue=1&rft.spage=31&rft.epage=39&rft.pages=31-39&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.1111/j.1467-9876.2005.00529.x&rft_dat=%3Cjstor_proqu%3E3592586%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5759-f0476c82c4c8ab29a9c85f088dd4c3323ad251639de8b5d2ff2627870b720b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201704123&rft_id=info:pmid/&rft_jstor_id=3592586&rfr_iscdi=true |