Loading…

Rank tests of unit root hypothesis with infinite variance errors

We consider a family of rank tests based on the regression rank score process introduced by Gutenbrunner and Jurečková (Ann. Statist. 20 (1992) 305) to test the unit root hypothesis under infinite variance innovations. Unlike the finite variance case as studied by Hasan and Koenker (Econometrica 65...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2001-08, Vol.104 (1), p.49-65
Main Author: Hasan, Mohammad N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c574t-b3117262a5703164ed0e0384800c12be73f3e9d23b803ae859c7a63488a21c5c3
cites cdi_FETCH-LOGICAL-c574t-b3117262a5703164ed0e0384800c12be73f3e9d23b803ae859c7a63488a21c5c3
container_end_page 65
container_issue 1
container_start_page 49
container_title Journal of econometrics
container_volume 104
creator Hasan, Mohammad N.
description We consider a family of rank tests based on the regression rank score process introduced by Gutenbrunner and Jurečková (Ann. Statist. 20 (1992) 305) to test the unit root hypothesis under infinite variance innovations. Unlike the finite variance case as studied by Hasan and Koenker (Econometrica 65 (1997) 133) the original rankscore test statistics ( T n ) exhibit a simple Gaussian limiting behavior. However, finite sample investigations suggest a correction similar to what HK proposed. This corrected version ( S ̂ T ) has reliable size, and exhibits remarkable power even in near unit root cases under a variety of α-stable distributions. Also, the test statistics do not depend on the α parameter.
doi_str_mv 10.1016/S0304-4076(01)00050-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38263411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407601000501</els_id><sourcerecordid>38263411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-b3117262a5703164ed0e0384800c12be73f3e9d23b803ae859c7a63488a21c5c3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYMouFY_ghBExD5Me28yyWSeVIrVQqHgn-eQzd5hU3cnY5Jd2W9vplsq-NLAJXDzO4fDCWOvEc4QUJ9_Bwlt00Kn3wOeAoCCBp-wBZpONNr06ilbPCDP2Yucb2eoNXLBPn5z4y9eKJfM48B3Yyg8xVj4-jDFsqYcMv8TypqHcQj1kfjepeBGT5xSiim_ZM8Gt8n06v4-YT8vP_-4-Npc33y5uvh03XjVtaVZSsROaOFUBxJ1SysgkKY1AB7Fkjo5SOpXQi4NSEdG9b5zWrbGOIFeeXnC3h19pxR_72peuw3Z02bjRoq7bKURFUes4Jv_wNu4S2PNZrHXWgiBpkLqCPkUc0402CmFrUsHi2DnUu1dqXZuzALau1LtbH511CWayD-IqB4fx7i1eysdVqF0hzoCqla6MC_rTHXa3mpl12Vbvd7eB3XZu82Qaqsh_wuCYLRRFftwxKi2uw-UbPaB6gesQiJf7CqGR0L_BcETodA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196622218</pqid></control><display><type>article</type><title>Rank tests of unit root hypothesis with infinite variance errors</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection</source><source>Elsevier SD Backfile Economics</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Hasan, Mohammad N.</creator><creatorcontrib>Hasan, Mohammad N.</creatorcontrib><description>We consider a family of rank tests based on the regression rank score process introduced by Gutenbrunner and Jurečková (Ann. Statist. 20 (1992) 305) to test the unit root hypothesis under infinite variance innovations. Unlike the finite variance case as studied by Hasan and Koenker (Econometrica 65 (1997) 133) the original rankscore test statistics ( T n ) exhibit a simple Gaussian limiting behavior. However, finite sample investigations suggest a correction similar to what HK proposed. This corrected version ( S ̂ T ) has reliable size, and exhibits remarkable power even in near unit root cases under a variety of α-stable distributions. Also, the test statistics do not depend on the α parameter.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/S0304-4076(01)00050-1</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Correlation ; Econometrics ; Economic models ; Exact sciences and technology ; Hypotheses ; Innovation ; Linear inference, regression ; Mathematics ; Modelling ; Parametric inference ; Probability and statistics ; Quantile regression ; Regression analysis ; Regression rank score ; Sciences and techniques of general use ; Statistics ; Studies ; Time series ; Unit root tests ; Variance ; Variance analysis ; α-stable process</subject><ispartof>Journal of econometrics, 2001-08, Vol.104 (1), p.49-65</ispartof><rights>2001 Elsevier Science S.A.</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-b3117262a5703164ed0e0384800c12be73f3e9d23b803ae859c7a63488a21c5c3</citedby><cites>FETCH-LOGICAL-c574t-b3117262a5703164ed0e0384800c12be73f3e9d23b803ae859c7a63488a21c5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407601000501$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3447,3551,27901,27902,33200,33201,45968,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1108685$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a104_3ay_3a2001_3ai_3a1_3ap_3a49-65.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasan, Mohammad N.</creatorcontrib><title>Rank tests of unit root hypothesis with infinite variance errors</title><title>Journal of econometrics</title><description>We consider a family of rank tests based on the regression rank score process introduced by Gutenbrunner and Jurečková (Ann. Statist. 20 (1992) 305) to test the unit root hypothesis under infinite variance innovations. Unlike the finite variance case as studied by Hasan and Koenker (Econometrica 65 (1997) 133) the original rankscore test statistics ( T n ) exhibit a simple Gaussian limiting behavior. However, finite sample investigations suggest a correction similar to what HK proposed. This corrected version ( S ̂ T ) has reliable size, and exhibits remarkable power even in near unit root cases under a variety of α-stable distributions. Also, the test statistics do not depend on the α parameter.</description><subject>Correlation</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Exact sciences and technology</subject><subject>Hypotheses</subject><subject>Innovation</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Modelling</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Quantile regression</subject><subject>Regression analysis</subject><subject>Regression rank score</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Time series</subject><subject>Unit root tests</subject><subject>Variance</subject><subject>Variance analysis</subject><subject>α-stable process</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkV9rFDEUxYMouFY_ghBExD5Me28yyWSeVIrVQqHgn-eQzd5hU3cnY5Jd2W9vplsq-NLAJXDzO4fDCWOvEc4QUJ9_Bwlt00Kn3wOeAoCCBp-wBZpONNr06ilbPCDP2Yucb2eoNXLBPn5z4y9eKJfM48B3Yyg8xVj4-jDFsqYcMv8TypqHcQj1kfjepeBGT5xSiim_ZM8Gt8n06v4-YT8vP_-4-Npc33y5uvh03XjVtaVZSsROaOFUBxJ1SysgkKY1AB7Fkjo5SOpXQi4NSEdG9b5zWrbGOIFeeXnC3h19pxR_72peuw3Z02bjRoq7bKURFUes4Jv_wNu4S2PNZrHXWgiBpkLqCPkUc0402CmFrUsHi2DnUu1dqXZuzALau1LtbH511CWayD-IqB4fx7i1eysdVqF0hzoCqla6MC_rTHXa3mpl12Vbvd7eB3XZu82Qaqsh_wuCYLRRFftwxKi2uw-UbPaB6gesQiJf7CqGR0L_BcETodA</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Hasan, Mohammad N.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20010801</creationdate><title>Rank tests of unit root hypothesis with infinite variance errors</title><author>Hasan, Mohammad N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-b3117262a5703164ed0e0384800c12be73f3e9d23b803ae859c7a63488a21c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Correlation</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Exact sciences and technology</topic><topic>Hypotheses</topic><topic>Innovation</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Modelling</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Quantile regression</topic><topic>Regression analysis</topic><topic>Regression rank score</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Time series</topic><topic>Unit root tests</topic><topic>Variance</topic><topic>Variance analysis</topic><topic>α-stable process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Mohammad N.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Mohammad N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank tests of unit root hypothesis with infinite variance errors</atitle><jtitle>Journal of econometrics</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>104</volume><issue>1</issue><spage>49</spage><epage>65</epage><pages>49-65</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>We consider a family of rank tests based on the regression rank score process introduced by Gutenbrunner and Jurečková (Ann. Statist. 20 (1992) 305) to test the unit root hypothesis under infinite variance innovations. Unlike the finite variance case as studied by Hasan and Koenker (Econometrica 65 (1997) 133) the original rankscore test statistics ( T n ) exhibit a simple Gaussian limiting behavior. However, finite sample investigations suggest a correction similar to what HK proposed. This corrected version ( S ̂ T ) has reliable size, and exhibits remarkable power even in near unit root cases under a variety of α-stable distributions. Also, the test statistics do not depend on the α parameter.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4076(01)00050-1</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2001-08, Vol.104 (1), p.49-65
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_38263411
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection; Elsevier SD Backfile Economics; Backfile Package - Mathematics (Legacy) [YMT]
subjects Correlation
Econometrics
Economic models
Exact sciences and technology
Hypotheses
Innovation
Linear inference, regression
Mathematics
Modelling
Parametric inference
Probability and statistics
Quantile regression
Regression analysis
Regression rank score
Sciences and techniques of general use
Statistics
Studies
Time series
Unit root tests
Variance
Variance analysis
α-stable process
title Rank tests of unit root hypothesis with infinite variance errors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%20tests%20of%20unit%20root%20hypothesis%20with%20infinite%20variance%20errors&rft.jtitle=Journal%20of%20econometrics&rft.au=Hasan,%20Mohammad%20N.&rft.date=2001-08-01&rft.volume=104&rft.issue=1&rft.spage=49&rft.epage=65&rft.pages=49-65&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/S0304-4076(01)00050-1&rft_dat=%3Cproquest_cross%3E38263411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-b3117262a5703164ed0e0384800c12be73f3e9d23b803ae859c7a63488a21c5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196622218&rft_id=info:pmid/&rfr_iscdi=true