Loading…
Model selection in spline nonparametric regression
A Bayesian approach is presented for model selection in nonparametric regression with Gaussian errors and in binary nonparametric regression. A smoothness prior is assumed for each component of the model and the posterior probabilities of the candidate models are approximated using the Bayesian info...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2002-01, Vol.64 (1), p.119-139 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Bayesian approach is presented for model selection in nonparametric regression with Gaussian errors and in binary nonparametric regression. A smoothness prior is assumed for each component of the model and the posterior probabilities of the candidate models are approximated using the Bayesian information criterion. We study the model selection method by simulation and show that it has excellent frequentist properties and gives improved estimates of the regression surface. All the computations are carried out efficiently using the Gibbs sampler. |
---|---|
ISSN: | 1369-7412 1467-9868 |
DOI: | 10.1111/1467-9868.00328 |