Loading…

Implementation with Near-Complete Information

Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a des...

Full description

Saved in:
Bibliographic Details
Published in:Econometrica 2003-05, Vol.71 (3), p.857-871
Main Authors: Chung, Kim-Sau, Ely, Jeffrey C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3
cites cdi_FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3
container_end_page 871
container_issue 3
container_start_page 857
container_title Econometrica
container_volume 71
creator Chung, Kim-Sau
Ely, Jeffrey C.
description Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a desired outcome, and entertains the possibility that players may have even the slightest uncertainty about payoffs, then the planner should insist on a solution concept with closed graph. We show that this requirement entails substantial restrictions on the set of implementable social choice rules. In particular, when preferences are strict (or more generally, hedonic), while almost any social choice function can be implemented in undominated Nash equilibrium, only monotonic social choice functions can be implemented in the closure of the undominated Nash correspondence.
doi_str_mv 10.1111/1468-0262.00428
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38461621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1555524</jstor_id><sourcerecordid>1555524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3</originalsourceid><addsrcrecordid>eNqFkM9PwjAcxRujiYievXggJnordP1FdzSIgBL0gHJsuq2Lw23FdgT57-0YgcSL33yTb9L3eS_NA-A6QN3ATy-gXECEOe4iRLE4Aa3DyyloIRRgGHKBz8GFc0uEEPPbAnBSrHJd6LJSVWbKziarPjszrSwcmFqpdGdSpsYWO_kSnKUqd_pqf9vg_Wk4H4zh9HU0GTxMYcwIFTAKaUTTPg91GtGEU5xwFgUpEZEmWDFBRRRThrEKE8FZkkSJUiHGKaFh4rmEtMF9k7uy5nutXSWLzMU6z1WpzdpJIigPOA48ePsHXJq1Lf3fJEZECIxD4qFeA8XWOGd1Klc2K5TdygDJujtZNyXrpuSuO--428cqF6s8taqMM3e0UYFCIpjnaMNtslxv_4uVw8H8oYm_aWxLVxl7tDE_mHoZNnLmKv1zkJX9krxP-kwuZiM5Hc9f3p4fF_KD_ALfeJSt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203882293</pqid></control><display><type>article</type><title>Implementation with Near-Complete Information</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM global</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chung, Kim-Sau ; Ely, Jeffrey C.</creator><creatorcontrib>Chung, Kim-Sau ; Ely, Jeffrey C.</creatorcontrib><description>Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a desired outcome, and entertains the possibility that players may have even the slightest uncertainty about payoffs, then the planner should insist on a solution concept with closed graph. We show that this requirement entails substantial restrictions on the set of implementable social choice rules. In particular, when preferences are strict (or more generally, hedonic), while almost any social choice function can be implemented in undominated Nash equilibrium, only monotonic social choice functions can be implemented in the closure of the undominated Nash correspondence.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.1111/1468-0262.00428</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Science Ltd</publisher><subject>Applications ; Applied sciences ; Decision theory. Utility theory ; Determinism ; Econometrics ; Economic models ; Economic theory ; Economic uncertainty ; Equilibrium ; Exact sciences and technology ; Game theory ; Implementation ; Information ; Insurance, economics, finance ; Integers ; Lotteries ; Mathematical methods ; Mathematical monotonicity ; Mathematics ; Nash equilibrium ; near-complete information ; Necessary conditions ; Operational research and scientific management ; Operational research. Management science ; Pay-off ; Preferences ; Probability and statistics ; Sciences and techniques of general use ; Social choice ; Statistics ; Studies ; Sufficiency and information ; undominated Nash equilibrium</subject><ispartof>Econometrica, 2003-05, Vol.71 (3), p.857-871</ispartof><rights>Copyright 2003 Econometric Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Econometric Society May 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3</citedby><cites>FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/203882293/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/203882293?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,11885,12826,21373,27901,27902,33200,33201,33588,33589,36027,36028,36037,36038,43709,44337,44339,58213,58446,73964,74636,74638</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14809385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Kim-Sau</creatorcontrib><creatorcontrib>Ely, Jeffrey C.</creatorcontrib><title>Implementation with Near-Complete Information</title><title>Econometrica</title><description>Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a desired outcome, and entertains the possibility that players may have even the slightest uncertainty about payoffs, then the planner should insist on a solution concept with closed graph. We show that this requirement entails substantial restrictions on the set of implementable social choice rules. In particular, when preferences are strict (or more generally, hedonic), while almost any social choice function can be implemented in undominated Nash equilibrium, only monotonic social choice functions can be implemented in the closure of the undominated Nash correspondence.</description><subject>Applications</subject><subject>Applied sciences</subject><subject>Decision theory. Utility theory</subject><subject>Determinism</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economic uncertainty</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Implementation</subject><subject>Information</subject><subject>Insurance, economics, finance</subject><subject>Integers</subject><subject>Lotteries</subject><subject>Mathematical methods</subject><subject>Mathematical monotonicity</subject><subject>Mathematics</subject><subject>Nash equilibrium</subject><subject>near-complete information</subject><subject>Necessary conditions</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Pay-off</subject><subject>Preferences</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Social choice</subject><subject>Statistics</subject><subject>Studies</subject><subject>Sufficiency and information</subject><subject>undominated Nash equilibrium</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNqFkM9PwjAcxRujiYievXggJnordP1FdzSIgBL0gHJsuq2Lw23FdgT57-0YgcSL33yTb9L3eS_NA-A6QN3ATy-gXECEOe4iRLE4Aa3DyyloIRRgGHKBz8GFc0uEEPPbAnBSrHJd6LJSVWbKziarPjszrSwcmFqpdGdSpsYWO_kSnKUqd_pqf9vg_Wk4H4zh9HU0GTxMYcwIFTAKaUTTPg91GtGEU5xwFgUpEZEmWDFBRRRThrEKE8FZkkSJUiHGKaFh4rmEtMF9k7uy5nutXSWLzMU6z1WpzdpJIigPOA48ePsHXJq1Lf3fJEZECIxD4qFeA8XWOGd1Klc2K5TdygDJujtZNyXrpuSuO--428cqF6s8taqMM3e0UYFCIpjnaMNtslxv_4uVw8H8oYm_aWxLVxl7tDE_mHoZNnLmKv1zkJX9krxP-kwuZiM5Hc9f3p4fF_KD_ALfeJSt</recordid><startdate>200305</startdate><enddate>200305</enddate><creator>Chung, Kim-Sau</creator><creator>Ely, Jeffrey C.</creator><general>Blackwell Science Ltd</general><general>Econometric Society</general><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200305</creationdate><title>Implementation with Near-Complete Information</title><author>Chung, Kim-Sau ; Ely, Jeffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applications</topic><topic>Applied sciences</topic><topic>Decision theory. Utility theory</topic><topic>Determinism</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economic uncertainty</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Implementation</topic><topic>Information</topic><topic>Insurance, economics, finance</topic><topic>Integers</topic><topic>Lotteries</topic><topic>Mathematical methods</topic><topic>Mathematical monotonicity</topic><topic>Mathematics</topic><topic>Nash equilibrium</topic><topic>near-complete information</topic><topic>Necessary conditions</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Pay-off</topic><topic>Preferences</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Social choice</topic><topic>Statistics</topic><topic>Studies</topic><topic>Sufficiency and information</topic><topic>undominated Nash equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Kim-Sau</creatorcontrib><creatorcontrib>Ely, Jeffrey C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>ProQuest Healthcare Administration Database</collection><collection>ProQuest research library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Kim-Sau</au><au>Ely, Jeffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation with Near-Complete Information</atitle><jtitle>Econometrica</jtitle><date>2003-05</date><risdate>2003</risdate><volume>71</volume><issue>3</issue><spage>857</spage><epage>871</epage><pages>857-871</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a desired outcome, and entertains the possibility that players may have even the slightest uncertainty about payoffs, then the planner should insist on a solution concept with closed graph. We show that this requirement entails substantial restrictions on the set of implementable social choice rules. In particular, when preferences are strict (or more generally, hedonic), while almost any social choice function can be implemented in undominated Nash equilibrium, only monotonic social choice functions can be implemented in the closure of the undominated Nash correspondence.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/1468-0262.00428</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9682
ispartof Econometrica, 2003-05, Vol.71 (3), p.857-871
issn 0012-9682
1468-0262
language eng
recordid cdi_proquest_miscellaneous_38461621
source International Bibliography of the Social Sciences (IBSS); ABI/INFORM global; EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; ABI/INFORM Global; Wiley-Blackwell Read & Publish Collection
subjects Applications
Applied sciences
Decision theory. Utility theory
Determinism
Econometrics
Economic models
Economic theory
Economic uncertainty
Equilibrium
Exact sciences and technology
Game theory
Implementation
Information
Insurance, economics, finance
Integers
Lotteries
Mathematical methods
Mathematical monotonicity
Mathematics
Nash equilibrium
near-complete information
Necessary conditions
Operational research and scientific management
Operational research. Management science
Pay-off
Preferences
Probability and statistics
Sciences and techniques of general use
Social choice
Statistics
Studies
Sufficiency and information
undominated Nash equilibrium
title Implementation with Near-Complete Information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20with%20Near-Complete%20Information&rft.jtitle=Econometrica&rft.au=Chung,%20Kim-Sau&rft.date=2003-05&rft.volume=71&rft.issue=3&rft.spage=857&rft.epage=871&rft.pages=857-871&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.1111/1468-0262.00428&rft_dat=%3Cjstor_proqu%3E1555524%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203882293&rft_id=info:pmid/&rft_jstor_id=1555524&rfr_iscdi=true