Loading…
Implementation with Near-Complete Information
Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a des...
Saved in:
Published in: | Econometrica 2003-05, Vol.71 (3), p.857-871 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3 |
container_end_page | 871 |
container_issue | 3 |
container_start_page | 857 |
container_title | Econometrica |
container_volume | 71 |
creator | Chung, Kim-Sau Ely, Jeffrey C. |
description | Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a desired outcome, and entertains the possibility that players may have even the slightest uncertainty about payoffs, then the planner should insist on a solution concept with closed graph. We show that this requirement entails substantial restrictions on the set of implementable social choice rules. In particular, when preferences are strict (or more generally, hedonic), while almost any social choice function can be implemented in undominated Nash equilibrium, only monotonic social choice functions can be implemented in the closure of the undominated Nash correspondence. |
doi_str_mv | 10.1111/1468-0262.00428 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38461621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1555524</jstor_id><sourcerecordid>1555524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3</originalsourceid><addsrcrecordid>eNqFkM9PwjAcxRujiYievXggJnordP1FdzSIgBL0gHJsuq2Lw23FdgT57-0YgcSL33yTb9L3eS_NA-A6QN3ATy-gXECEOe4iRLE4Aa3DyyloIRRgGHKBz8GFc0uEEPPbAnBSrHJd6LJSVWbKziarPjszrSwcmFqpdGdSpsYWO_kSnKUqd_pqf9vg_Wk4H4zh9HU0GTxMYcwIFTAKaUTTPg91GtGEU5xwFgUpEZEmWDFBRRRThrEKE8FZkkSJUiHGKaFh4rmEtMF9k7uy5nutXSWLzMU6z1WpzdpJIigPOA48ePsHXJq1Lf3fJEZECIxD4qFeA8XWOGd1Klc2K5TdygDJujtZNyXrpuSuO--428cqF6s8taqMM3e0UYFCIpjnaMNtslxv_4uVw8H8oYm_aWxLVxl7tDE_mHoZNnLmKv1zkJX9krxP-kwuZiM5Hc9f3p4fF_KD_ALfeJSt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203882293</pqid></control><display><type>article</type><title>Implementation with Near-Complete Information</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM global</source><source>EBSCOhost Econlit with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Chung, Kim-Sau ; Ely, Jeffrey C.</creator><creatorcontrib>Chung, Kim-Sau ; Ely, Jeffrey C.</creatorcontrib><description>Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a desired outcome, and entertains the possibility that players may have even the slightest uncertainty about payoffs, then the planner should insist on a solution concept with closed graph. We show that this requirement entails substantial restrictions on the set of implementable social choice rules. In particular, when preferences are strict (or more generally, hedonic), while almost any social choice function can be implemented in undominated Nash equilibrium, only monotonic social choice functions can be implemented in the closure of the undominated Nash correspondence.</description><identifier>ISSN: 0012-9682</identifier><identifier>EISSN: 1468-0262</identifier><identifier>DOI: 10.1111/1468-0262.00428</identifier><identifier>CODEN: ECMTA7</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Science Ltd</publisher><subject>Applications ; Applied sciences ; Decision theory. Utility theory ; Determinism ; Econometrics ; Economic models ; Economic theory ; Economic uncertainty ; Equilibrium ; Exact sciences and technology ; Game theory ; Implementation ; Information ; Insurance, economics, finance ; Integers ; Lotteries ; Mathematical methods ; Mathematical monotonicity ; Mathematics ; Nash equilibrium ; near-complete information ; Necessary conditions ; Operational research and scientific management ; Operational research. Management science ; Pay-off ; Preferences ; Probability and statistics ; Sciences and techniques of general use ; Social choice ; Statistics ; Studies ; Sufficiency and information ; undominated Nash equilibrium</subject><ispartof>Econometrica, 2003-05, Vol.71 (3), p.857-871</ispartof><rights>Copyright 2003 Econometric Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Econometric Society May 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3</citedby><cites>FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/203882293/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/203882293?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,11885,12826,21373,27901,27902,33200,33201,33588,33589,36027,36028,36037,36038,43709,44337,44339,58213,58446,73964,74636,74638</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14809385$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Kim-Sau</creatorcontrib><creatorcontrib>Ely, Jeffrey C.</creatorcontrib><title>Implementation with Near-Complete Information</title><title>Econometrica</title><description>Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a desired outcome, and entertains the possibility that players may have even the slightest uncertainty about payoffs, then the planner should insist on a solution concept with closed graph. We show that this requirement entails substantial restrictions on the set of implementable social choice rules. In particular, when preferences are strict (or more generally, hedonic), while almost any social choice function can be implemented in undominated Nash equilibrium, only monotonic social choice functions can be implemented in the closure of the undominated Nash correspondence.</description><subject>Applications</subject><subject>Applied sciences</subject><subject>Decision theory. Utility theory</subject><subject>Determinism</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Economic uncertainty</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Implementation</subject><subject>Information</subject><subject>Insurance, economics, finance</subject><subject>Integers</subject><subject>Lotteries</subject><subject>Mathematical methods</subject><subject>Mathematical monotonicity</subject><subject>Mathematics</subject><subject>Nash equilibrium</subject><subject>near-complete information</subject><subject>Necessary conditions</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Pay-off</subject><subject>Preferences</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Social choice</subject><subject>Statistics</subject><subject>Studies</subject><subject>Sufficiency and information</subject><subject>undominated Nash equilibrium</subject><issn>0012-9682</issn><issn>1468-0262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M0C</sourceid><sourceid>M2R</sourceid><recordid>eNqFkM9PwjAcxRujiYievXggJnordP1FdzSIgBL0gHJsuq2Lw23FdgT57-0YgcSL33yTb9L3eS_NA-A6QN3ATy-gXECEOe4iRLE4Aa3DyyloIRRgGHKBz8GFc0uEEPPbAnBSrHJd6LJSVWbKziarPjszrSwcmFqpdGdSpsYWO_kSnKUqd_pqf9vg_Wk4H4zh9HU0GTxMYcwIFTAKaUTTPg91GtGEU5xwFgUpEZEmWDFBRRRThrEKE8FZkkSJUiHGKaFh4rmEtMF9k7uy5nutXSWLzMU6z1WpzdpJIigPOA48ePsHXJq1Lf3fJEZECIxD4qFeA8XWOGd1Klc2K5TdygDJujtZNyXrpuSuO--428cqF6s8taqMM3e0UYFCIpjnaMNtslxv_4uVw8H8oYm_aWxLVxl7tDE_mHoZNnLmKv1zkJX9krxP-kwuZiM5Hc9f3p4fF_KD_ALfeJSt</recordid><startdate>200305</startdate><enddate>200305</enddate><creator>Chung, Kim-Sau</creator><creator>Ely, Jeffrey C.</creator><general>Blackwell Science Ltd</general><general>Econometric Society</general><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200305</creationdate><title>Implementation with Near-Complete Information</title><author>Chung, Kim-Sau ; Ely, Jeffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applications</topic><topic>Applied sciences</topic><topic>Decision theory. Utility theory</topic><topic>Determinism</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Economic uncertainty</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Implementation</topic><topic>Information</topic><topic>Insurance, economics, finance</topic><topic>Integers</topic><topic>Lotteries</topic><topic>Mathematical methods</topic><topic>Mathematical monotonicity</topic><topic>Mathematics</topic><topic>Nash equilibrium</topic><topic>near-complete information</topic><topic>Necessary conditions</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Pay-off</topic><topic>Preferences</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Social choice</topic><topic>Statistics</topic><topic>Studies</topic><topic>Sufficiency and information</topic><topic>undominated Nash equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Kim-Sau</creatorcontrib><creatorcontrib>Ely, Jeffrey C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>ProQuest Healthcare Administration Database</collection><collection>ProQuest research library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Econometrica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Kim-Sau</au><au>Ely, Jeffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation with Near-Complete Information</atitle><jtitle>Econometrica</jtitle><date>2003-05</date><risdate>2003</risdate><volume>71</volume><issue>3</issue><spage>857</spage><epage>871</epage><pages>857-871</pages><issn>0012-9682</issn><eissn>1468-0262</eissn><coden>ECMTA7</coden><abstract>Many refinements of Nash equilibrium yield solution correspondences that do not have closed graph in the space of payoffs or information. This has significance for implementation theory, especially under complete information. If a planner is concerned that all equilibria of his mechanism yield a desired outcome, and entertains the possibility that players may have even the slightest uncertainty about payoffs, then the planner should insist on a solution concept with closed graph. We show that this requirement entails substantial restrictions on the set of implementable social choice rules. In particular, when preferences are strict (or more generally, hedonic), while almost any social choice function can be implemented in undominated Nash equilibrium, only monotonic social choice functions can be implemented in the closure of the undominated Nash correspondence.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/1468-0262.00428</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9682 |
ispartof | Econometrica, 2003-05, Vol.71 (3), p.857-871 |
issn | 0012-9682 1468-0262 |
language | eng |
recordid | cdi_proquest_miscellaneous_38461621 |
source | International Bibliography of the Social Sciences (IBSS); ABI/INFORM global; EBSCOhost Econlit with Full Text; JSTOR Archival Journals and Primary Sources Collection; Social Science Premium Collection; ABI/INFORM Global; Wiley-Blackwell Read & Publish Collection |
subjects | Applications Applied sciences Decision theory. Utility theory Determinism Econometrics Economic models Economic theory Economic uncertainty Equilibrium Exact sciences and technology Game theory Implementation Information Insurance, economics, finance Integers Lotteries Mathematical methods Mathematical monotonicity Mathematics Nash equilibrium near-complete information Necessary conditions Operational research and scientific management Operational research. Management science Pay-off Preferences Probability and statistics Sciences and techniques of general use Social choice Statistics Studies Sufficiency and information undominated Nash equilibrium |
title | Implementation with Near-Complete Information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20with%20Near-Complete%20Information&rft.jtitle=Econometrica&rft.au=Chung,%20Kim-Sau&rft.date=2003-05&rft.volume=71&rft.issue=3&rft.spage=857&rft.epage=871&rft.pages=857-871&rft.issn=0012-9682&rft.eissn=1468-0262&rft.coden=ECMTA7&rft_id=info:doi/10.1111/1468-0262.00428&rft_dat=%3Cjstor_proqu%3E1555524%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5348-b94b4f769efb4d642d65b1f38be32a5848bc4522a9d865ddbdaa922f349db1fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=203882293&rft_id=info:pmid/&rft_jstor_id=1555524&rfr_iscdi=true |