Loading…

Specification Testing with Locally Misspecified Alternatives

It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mea...

Full description

Saved in:
Bibliographic Details
Published in:Econometric theory 1993-12, Vol.9 (4), p.649-658
Main Authors: Bera, Anil K., Yoon, Mann J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33
cites cdi_FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33
container_end_page 658
container_issue 4
container_start_page 649
container_title Econometric theory
container_volume 9
creator Bera, Anil K.
Yoon, Mann J.
description It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mean and covariance matrix of the usual LM statistic. We show that for local misspecification the adjusted test is asymptotically equivalent to Neyman's C(α) test, and therefore, shares the optimality properties of the C(α) test. The main advantage of the new test is that, compared to the C(α) test, it is much simpler to compute. Our procedure does require full specification of the model and there might be some loss of asymptotic power relative to the unadjusted test if the model is indeed correctly specified.
doi_str_mv 10.1017/S0266466600008021
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38467506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466600008021</cupid><jstor_id>3532679</jstor_id><sourcerecordid>3532679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_QHAxILgbfZlk8gFuatEqtIhUN25CJpPR1GmnJlM__r0pU0QU3yaLc-7j5iF0iOEUA-ZnU8gYo4wxiCMgw1uohymTKSUMtlFvjdM130V7IcwAcCY56aHz6dIaVzmjW9csknsbWrd4St5d-5yMG6Pr-jOZuBA6y5bJoG6tX0T7zYZ9tFPpOtiDzdtHD1eX98PrdHw7uhkOxqnJMW9TKTBkhZWloAWnBENJBZUa44JWBkswmgAlHCohGIWScJ2TSnJjtC611IT00Um3d-mb11WsqOYuGFvXemGbVVBEUMZzYFE8_iXOmlVsWwcV_yuAslzwaOHOMr4JwdtKLb2ba_-pMKj1NdWfa8bMUZeZhbbx3wGSk4xxGXHaYRda-_GNtX9RjBOeKza6U5PhVF7Ix4mC6JNNBT0vvCuf7I-m_5b4AuDwjW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298046587</pqid></control><display><type>article</type><title>Specification Testing with Locally Misspecified Alternatives</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR-E-Journals</source><source>KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)</source><creator>Bera, Anil K. ; Yoon, Mann J.</creator><creatorcontrib>Bera, Anil K. ; Yoon, Mann J.</creatorcontrib><description>It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mean and covariance matrix of the usual LM statistic. We show that for local misspecification the adjusted test is asymptotically equivalent to Neyman's C(α) test, and therefore, shares the optimality properties of the C(α) test. The main advantage of the new test is that, compared to the C(α) test, it is much simpler to compute. Our procedure does require full specification of the model and there might be some loss of asymptotic power relative to the unadjusted test if the model is indeed correctly specified.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466600008021</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Covariance matrices ; Economic models ; Economic statistics ; Estimators ; International economics ; Lagrange multipliers ; Maximum likelihood estimation ; Probabilities ; Statistical variance ; Statistics</subject><ispartof>Econometric theory, 1993-12, Vol.9 (4), p.649-658</ispartof><rights>Copyright © Cambridge University Press 1993</rights><rights>Copyright 1993 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33</citedby><cites>FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3532679$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466600008021/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,33200,55663,58212,58445</link.rule.ids></links><search><creatorcontrib>Bera, Anil K.</creatorcontrib><creatorcontrib>Yoon, Mann J.</creatorcontrib><title>Specification Testing with Locally Misspecified Alternatives</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mean and covariance matrix of the usual LM statistic. We show that for local misspecification the adjusted test is asymptotically equivalent to Neyman's C(α) test, and therefore, shares the optimality properties of the C(α) test. The main advantage of the new test is that, compared to the C(α) test, it is much simpler to compute. Our procedure does require full specification of the model and there might be some loss of asymptotic power relative to the unadjusted test if the model is indeed correctly specified.</description><subject>Covariance matrices</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Estimators</subject><subject>International economics</subject><subject>Lagrange multipliers</subject><subject>Maximum likelihood estimation</subject><subject>Probabilities</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp1kE1LAzEURYMoWKs_QHAxILgbfZlk8gFuatEqtIhUN25CJpPR1GmnJlM__r0pU0QU3yaLc-7j5iF0iOEUA-ZnU8gYo4wxiCMgw1uohymTKSUMtlFvjdM130V7IcwAcCY56aHz6dIaVzmjW9csknsbWrd4St5d-5yMG6Pr-jOZuBA6y5bJoG6tX0T7zYZ9tFPpOtiDzdtHD1eX98PrdHw7uhkOxqnJMW9TKTBkhZWloAWnBENJBZUa44JWBkswmgAlHCohGIWScJ2TSnJjtC611IT00Um3d-mb11WsqOYuGFvXemGbVVBEUMZzYFE8_iXOmlVsWwcV_yuAslzwaOHOMr4JwdtKLb2ba_-pMKj1NdWfa8bMUZeZhbbx3wGSk4xxGXHaYRda-_GNtX9RjBOeKza6U5PhVF7Ix4mC6JNNBT0vvCuf7I-m_5b4AuDwjW8</recordid><startdate>19931201</startdate><enddate>19931201</enddate><creator>Bera, Anil K.</creator><creator>Yoon, Mann J.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HAGHG</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19931201</creationdate><title>Specification Testing with Locally Misspecified Alternatives</title><author>Bera, Anil K. ; Yoon, Mann J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Covariance matrices</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Estimators</topic><topic>International economics</topic><topic>Lagrange multipliers</topic><topic>Maximum likelihood estimation</topic><topic>Probabilities</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bera, Anil K.</creatorcontrib><creatorcontrib>Yoon, Mann J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 12</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Anil K.</au><au>Yoon, Mann J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specification Testing with Locally Misspecified Alternatives</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>1993-12-01</date><risdate>1993</risdate><volume>9</volume><issue>4</issue><spage>649</spage><epage>658</epage><pages>649-658</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mean and covariance matrix of the usual LM statistic. We show that for local misspecification the adjusted test is asymptotically equivalent to Neyman's C(α) test, and therefore, shares the optimality properties of the C(α) test. The main advantage of the new test is that, compared to the C(α) test, it is much simpler to compute. Our procedure does require full specification of the model and there might be some loss of asymptotic power relative to the unadjusted test if the model is indeed correctly specified.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466600008021</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 1993-12, Vol.9 (4), p.649-658
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_38467506
source International Bibliography of the Social Sciences (IBSS); JSTOR-E-Journals; KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)
subjects Covariance matrices
Economic models
Economic statistics
Estimators
International economics
Lagrange multipliers
Maximum likelihood estimation
Probabilities
Statistical variance
Statistics
title Specification Testing with Locally Misspecified Alternatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specification%20Testing%20with%20Locally%20Misspecified%20Alternatives&rft.jtitle=Econometric%20theory&rft.au=Bera,%20Anil%20K.&rft.date=1993-12-01&rft.volume=9&rft.issue=4&rft.spage=649&rft.epage=658&rft.pages=649-658&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466600008021&rft_dat=%3Cjstor_proqu%3E3532679%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1298046587&rft_id=info:pmid/&rft_cupid=10_1017_S0266466600008021&rft_jstor_id=3532679&rfr_iscdi=true