Loading…
Specification Testing with Locally Misspecified Alternatives
It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mea...
Saved in:
Published in: | Econometric theory 1993-12, Vol.9 (4), p.649-658 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33 |
container_end_page | 658 |
container_issue | 4 |
container_start_page | 649 |
container_title | Econometric theory |
container_volume | 9 |
creator | Bera, Anil K. Yoon, Mann J. |
description | It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mean and covariance matrix of the usual LM statistic. We show that for local misspecification the adjusted test is asymptotically equivalent to Neyman's C(α) test, and therefore, shares the optimality properties of the C(α) test. The main advantage of the new test is that, compared to the C(α) test, it is much simpler to compute. Our procedure does require full specification of the model and there might be some loss of asymptotic power relative to the unadjusted test if the model is indeed correctly specified. |
doi_str_mv | 10.1017/S0266466600008021 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38467506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466600008021</cupid><jstor_id>3532679</jstor_id><sourcerecordid>3532679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_QHAxILgbfZlk8gFuatEqtIhUN25CJpPR1GmnJlM__r0pU0QU3yaLc-7j5iF0iOEUA-ZnU8gYo4wxiCMgw1uohymTKSUMtlFvjdM130V7IcwAcCY56aHz6dIaVzmjW9csknsbWrd4St5d-5yMG6Pr-jOZuBA6y5bJoG6tX0T7zYZ9tFPpOtiDzdtHD1eX98PrdHw7uhkOxqnJMW9TKTBkhZWloAWnBENJBZUa44JWBkswmgAlHCohGIWScJ2TSnJjtC611IT00Um3d-mb11WsqOYuGFvXemGbVVBEUMZzYFE8_iXOmlVsWwcV_yuAslzwaOHOMr4JwdtKLb2ba_-pMKj1NdWfa8bMUZeZhbbx3wGSk4xxGXHaYRda-_GNtX9RjBOeKza6U5PhVF7Ix4mC6JNNBT0vvCuf7I-m_5b4AuDwjW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298046587</pqid></control><display><type>article</type><title>Specification Testing with Locally Misspecified Alternatives</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR-E-Journals</source><source>KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS)</source><creator>Bera, Anil K. ; Yoon, Mann J.</creator><creatorcontrib>Bera, Anil K. ; Yoon, Mann J.</creatorcontrib><description>It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mean and covariance matrix of the usual LM statistic. We show that for local misspecification the adjusted test is asymptotically equivalent to Neyman's C(α) test, and therefore, shares the optimality properties of the C(α) test. The main advantage of the new test is that, compared to the C(α) test, it is much simpler to compute. Our procedure does require full specification of the model and there might be some loss of asymptotic power relative to the unadjusted test if the model is indeed correctly specified.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466600008021</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Covariance matrices ; Economic models ; Economic statistics ; Estimators ; International economics ; Lagrange multipliers ; Maximum likelihood estimation ; Probabilities ; Statistical variance ; Statistics</subject><ispartof>Econometric theory, 1993-12, Vol.9 (4), p.649-658</ispartof><rights>Copyright © Cambridge University Press 1993</rights><rights>Copyright 1993 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33</citedby><cites>FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3532679$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466600008021/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,33200,55663,58212,58445</link.rule.ids></links><search><creatorcontrib>Bera, Anil K.</creatorcontrib><creatorcontrib>Yoon, Mann J.</creatorcontrib><title>Specification Testing with Locally Misspecified Alternatives</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mean and covariance matrix of the usual LM statistic. We show that for local misspecification the adjusted test is asymptotically equivalent to Neyman's C(α) test, and therefore, shares the optimality properties of the C(α) test. The main advantage of the new test is that, compared to the C(α) test, it is much simpler to compute. Our procedure does require full specification of the model and there might be some loss of asymptotic power relative to the unadjusted test if the model is indeed correctly specified.</description><subject>Covariance matrices</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Estimators</subject><subject>International economics</subject><subject>Lagrange multipliers</subject><subject>Maximum likelihood estimation</subject><subject>Probabilities</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp1kE1LAzEURYMoWKs_QHAxILgbfZlk8gFuatEqtIhUN25CJpPR1GmnJlM__r0pU0QU3yaLc-7j5iF0iOEUA-ZnU8gYo4wxiCMgw1uohymTKSUMtlFvjdM130V7IcwAcCY56aHz6dIaVzmjW9csknsbWrd4St5d-5yMG6Pr-jOZuBA6y5bJoG6tX0T7zYZ9tFPpOtiDzdtHD1eX98PrdHw7uhkOxqnJMW9TKTBkhZWloAWnBENJBZUa44JWBkswmgAlHCohGIWScJ2TSnJjtC611IT00Um3d-mb11WsqOYuGFvXemGbVVBEUMZzYFE8_iXOmlVsWwcV_yuAslzwaOHOMr4JwdtKLb2ba_-pMKj1NdWfa8bMUZeZhbbx3wGSk4xxGXHaYRda-_GNtX9RjBOeKza6U5PhVF7Ix4mC6JNNBT0vvCuf7I-m_5b4AuDwjW8</recordid><startdate>19931201</startdate><enddate>19931201</enddate><creator>Bera, Anil K.</creator><creator>Yoon, Mann J.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HAGHG</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19931201</creationdate><title>Specification Testing with Locally Misspecified Alternatives</title><author>Bera, Anil K. ; Yoon, Mann J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Covariance matrices</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Estimators</topic><topic>International economics</topic><topic>Lagrange multipliers</topic><topic>Maximum likelihood estimation</topic><topic>Probabilities</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bera, Anil K.</creatorcontrib><creatorcontrib>Yoon, Mann J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 12</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Anil K.</au><au>Yoon, Mann J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specification Testing with Locally Misspecified Alternatives</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>1993-12-01</date><risdate>1993</risdate><volume>9</volume><issue>4</issue><spage>649</spage><epage>658</epage><pages>649-658</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>It is well known that most of the standard specification tests are not robust when the alternative is misspecified. Using the asymptotic distributions of standard Lagrange multiplier (LM) test under local misspecification, we suggest a robust specification test. This test essentially adjusts the mean and covariance matrix of the usual LM statistic. We show that for local misspecification the adjusted test is asymptotically equivalent to Neyman's C(α) test, and therefore, shares the optimality properties of the C(α) test. The main advantage of the new test is that, compared to the C(α) test, it is much simpler to compute. Our procedure does require full specification of the model and there might be some loss of asymptotic power relative to the unadjusted test if the model is indeed correctly specified.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466600008021</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4666 |
ispartof | Econometric theory, 1993-12, Vol.9 (4), p.649-658 |
issn | 0266-4666 1469-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_38467506 |
source | International Bibliography of the Social Sciences (IBSS); JSTOR-E-Journals; KB+ Cambridge University Press: JISC Collections:Full Collection Digital Archives (STM and HSS) |
subjects | Covariance matrices Economic models Economic statistics Estimators International economics Lagrange multipliers Maximum likelihood estimation Probabilities Statistical variance Statistics |
title | Specification Testing with Locally Misspecified Alternatives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specification%20Testing%20with%20Locally%20Misspecified%20Alternatives&rft.jtitle=Econometric%20theory&rft.au=Bera,%20Anil%20K.&rft.date=1993-12-01&rft.volume=9&rft.issue=4&rft.spage=649&rft.epage=658&rft.pages=649-658&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466600008021&rft_dat=%3Cjstor_proqu%3E3532679%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-98102be9d84b74310d4849a11b4fc190ca304370f88640d37a53f97ccaada9a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1298046587&rft_id=info:pmid/&rft_cupid=10_1017_S0266466600008021&rft_jstor_id=3532679&rfr_iscdi=true |