Loading…

Forecasting new product trial in a controlled test market environment

A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting...

Full description

Saved in:
Bibliographic Details
Published in:Journal of forecasting 2003-08, Vol.22 (5), p.391-410
Main Authors: Fader, Peter S., Hardie, Bruce G. S., Zeithammer, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43
cites cdi_FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43
container_end_page 410
container_issue 5
container_start_page 391
container_title Journal of forecasting
container_volume 22
creator Fader, Peter S.
Hardie, Bruce G. S.
Zeithammer, Robert
description A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model ‘components’ on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/for.869
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38538393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38538393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r-BeCBz1INWnapjnKuusHi4ooegtpOpWu3WRNUlf_vZGKB8G5zOVheOdFaJ-SE0pIetpYd1IWYgONKBEioYw-b6IRSTlPikKwbbTj_YIQwkuajtB0Zh1o5UNrXrCBNV45W_c64OBa1eHWYIW1NcHZroMaB_ABL5V7hYDBvLfOmiWYsIu2GtV52PvZY_Q4mz5MLpP57cXV5Gye6IxykehU6UxzoDWncViV67ypi1JlecY145CySnNdMqoUpwqqBigjpKmqWpFUZ2yMDoe7MeVbH7PIZes1dJ0yYHsvWZmzkgkW4cEfuLC9MzGbTKmgQuSkjOhoQNpZ7x00cuXa-NynpER-dyljlzJ2GeXxINdtB5__MTm7vR90MujWB_j41bE1WXDGc_l0cyEn6XV87TyTd-wLLiyEJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219199508</pqid></control><display><type>article</type><title>Forecasting new product trial in a controlled test market environment</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fader, Peter S. ; Hardie, Bruce G. S. ; Zeithammer, Robert</creator><creatorcontrib>Fader, Peter S. ; Hardie, Bruce G. S. ; Zeithammer, Robert</creatorcontrib><description>A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model ‘components’ on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.869</identifier><identifier>CODEN: JOFODV</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Calibration ; Economic models ; Economics ; Error ; Forecasts ; Market ; Marketing ; Mathematical models ; Methods ; Model testing ; new product sales forecasting ; Packaged goods ; Purchasing ; Sales ; Sales forecasting ; Studies ; test market ; Test markets ; trial and repeat</subject><ispartof>Journal of forecasting, 2003-08, Vol.22 (5), p.391-410</ispartof><rights>Copyright © 2003 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Aug 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43</citedby><cites>FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/219199508/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/219199508?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,11906,12847,27924,27925,33223,33224,36050,36051,36060,36061,44361,44363,74765,74767</link.rule.ids></links><search><creatorcontrib>Fader, Peter S.</creatorcontrib><creatorcontrib>Hardie, Bruce G. S.</creatorcontrib><creatorcontrib>Zeithammer, Robert</creatorcontrib><title>Forecasting new product trial in a controlled test market environment</title><title>Journal of forecasting</title><addtitle>J. Forecast</addtitle><description>A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model ‘components’ on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><subject>Calibration</subject><subject>Economic models</subject><subject>Economics</subject><subject>Error</subject><subject>Forecasts</subject><subject>Market</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Model testing</subject><subject>new product sales forecasting</subject><subject>Packaged goods</subject><subject>Purchasing</subject><subject>Sales</subject><subject>Sales forecasting</subject><subject>Studies</subject><subject>test market</subject><subject>Test markets</subject><subject>trial and repeat</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp10E1LxDAQBuAgCq6r-BeCBz1INWnapjnKuusHi4ooegtpOpWu3WRNUlf_vZGKB8G5zOVheOdFaJ-SE0pIetpYd1IWYgONKBEioYw-b6IRSTlPikKwbbTj_YIQwkuajtB0Zh1o5UNrXrCBNV45W_c64OBa1eHWYIW1NcHZroMaB_ABL5V7hYDBvLfOmiWYsIu2GtV52PvZY_Q4mz5MLpP57cXV5Gye6IxykehU6UxzoDWncViV67ypi1JlecY145CySnNdMqoUpwqqBigjpKmqWpFUZ2yMDoe7MeVbH7PIZes1dJ0yYHsvWZmzkgkW4cEfuLC9MzGbTKmgQuSkjOhoQNpZ7x00cuXa-NynpER-dyljlzJ2GeXxINdtB5__MTm7vR90MujWB_j41bE1WXDGc_l0cyEn6XV87TyTd-wLLiyEJw</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>Fader, Peter S.</creator><creator>Hardie, Bruce G. S.</creator><creator>Zeithammer, Robert</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200308</creationdate><title>Forecasting new product trial in a controlled test market environment</title><author>Fader, Peter S. ; Hardie, Bruce G. S. ; Zeithammer, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Calibration</topic><topic>Economic models</topic><topic>Economics</topic><topic>Error</topic><topic>Forecasts</topic><topic>Market</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Model testing</topic><topic>new product sales forecasting</topic><topic>Packaged goods</topic><topic>Purchasing</topic><topic>Sales</topic><topic>Sales forecasting</topic><topic>Studies</topic><topic>test market</topic><topic>Test markets</topic><topic>trial and repeat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fader, Peter S.</creatorcontrib><creatorcontrib>Hardie, Bruce G. S.</creatorcontrib><creatorcontrib>Zeithammer, Robert</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fader, Peter S.</au><au>Hardie, Bruce G. S.</au><au>Zeithammer, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting new product trial in a controlled test market environment</atitle><jtitle>Journal of forecasting</jtitle><addtitle>J. Forecast</addtitle><date>2003-08</date><risdate>2003</risdate><volume>22</volume><issue>5</issue><spage>391</spage><epage>410</epage><pages>391-410</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><coden>JOFODV</coden><abstract>A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model ‘components’ on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/for.869</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2003-08, Vol.22 (5), p.391-410
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_miscellaneous_38538393
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global; Wiley-Blackwell Read & Publish Collection
subjects Calibration
Economic models
Economics
Error
Forecasts
Market
Marketing
Mathematical models
Methods
Model testing
new product sales forecasting
Packaged goods
Purchasing
Sales
Sales forecasting
Studies
test market
Test markets
trial and repeat
title Forecasting new product trial in a controlled test market environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20new%20product%20trial%20in%20a%20controlled%20test%20market%20environment&rft.jtitle=Journal%20of%20forecasting&rft.au=Fader,%20Peter%20S.&rft.date=2003-08&rft.volume=22&rft.issue=5&rft.spage=391&rft.epage=410&rft.pages=391-410&rft.issn=0277-6693&rft.eissn=1099-131X&rft.coden=JOFODV&rft_id=info:doi/10.1002/for.869&rft_dat=%3Cproquest_cross%3E38538393%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219199508&rft_id=info:pmid/&rfr_iscdi=true