Loading…
Forecasting new product trial in a controlled test market environment
A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting...
Saved in:
Published in: | Journal of forecasting 2003-08, Vol.22 (5), p.391-410 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43 |
container_end_page | 410 |
container_issue | 5 |
container_start_page | 391 |
container_title | Journal of forecasting |
container_volume | 22 |
creator | Fader, Peter S. Hardie, Bruce G. S. Zeithammer, Robert |
description | A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model ‘components’ on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/for.869 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38538393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38538393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r-BeCBz1INWnapjnKuusHi4ooegtpOpWu3WRNUlf_vZGKB8G5zOVheOdFaJ-SE0pIetpYd1IWYgONKBEioYw-b6IRSTlPikKwbbTj_YIQwkuajtB0Zh1o5UNrXrCBNV45W_c64OBa1eHWYIW1NcHZroMaB_ABL5V7hYDBvLfOmiWYsIu2GtV52PvZY_Q4mz5MLpP57cXV5Gye6IxykehU6UxzoDWncViV67ypi1JlecY145CySnNdMqoUpwqqBigjpKmqWpFUZ2yMDoe7MeVbH7PIZes1dJ0yYHsvWZmzkgkW4cEfuLC9MzGbTKmgQuSkjOhoQNpZ7x00cuXa-NynpER-dyljlzJ2GeXxINdtB5__MTm7vR90MujWB_j41bE1WXDGc_l0cyEn6XV87TyTd-wLLiyEJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219199508</pqid></control><display><type>article</type><title>Forecasting new product trial in a controlled test market environment</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fader, Peter S. ; Hardie, Bruce G. S. ; Zeithammer, Robert</creator><creatorcontrib>Fader, Peter S. ; Hardie, Bruce G. S. ; Zeithammer, Robert</creatorcontrib><description>A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model ‘components’ on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.869</identifier><identifier>CODEN: JOFODV</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Calibration ; Economic models ; Economics ; Error ; Forecasts ; Market ; Marketing ; Mathematical models ; Methods ; Model testing ; new product sales forecasting ; Packaged goods ; Purchasing ; Sales ; Sales forecasting ; Studies ; test market ; Test markets ; trial and repeat</subject><ispartof>Journal of forecasting, 2003-08, Vol.22 (5), p.391-410</ispartof><rights>Copyright © 2003 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Aug 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43</citedby><cites>FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/219199508/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/219199508?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,11906,12847,27924,27925,33223,33224,36050,36051,36060,36061,44361,44363,74765,74767</link.rule.ids></links><search><creatorcontrib>Fader, Peter S.</creatorcontrib><creatorcontrib>Hardie, Bruce G. S.</creatorcontrib><creatorcontrib>Zeithammer, Robert</creatorcontrib><title>Forecasting new product trial in a controlled test market environment</title><title>Journal of forecasting</title><addtitle>J. Forecast</addtitle><description>A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model ‘components’ on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley & Sons, Ltd.</description><subject>Calibration</subject><subject>Economic models</subject><subject>Economics</subject><subject>Error</subject><subject>Forecasts</subject><subject>Market</subject><subject>Marketing</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Model testing</subject><subject>new product sales forecasting</subject><subject>Packaged goods</subject><subject>Purchasing</subject><subject>Sales</subject><subject>Sales forecasting</subject><subject>Studies</subject><subject>test market</subject><subject>Test markets</subject><subject>trial and repeat</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp10E1LxDAQBuAgCq6r-BeCBz1INWnapjnKuusHi4ooegtpOpWu3WRNUlf_vZGKB8G5zOVheOdFaJ-SE0pIetpYd1IWYgONKBEioYw-b6IRSTlPikKwbbTj_YIQwkuajtB0Zh1o5UNrXrCBNV45W_c64OBa1eHWYIW1NcHZroMaB_ABL5V7hYDBvLfOmiWYsIu2GtV52PvZY_Q4mz5MLpP57cXV5Gye6IxykehU6UxzoDWncViV67ypi1JlecY145CySnNdMqoUpwqqBigjpKmqWpFUZ2yMDoe7MeVbH7PIZes1dJ0yYHsvWZmzkgkW4cEfuLC9MzGbTKmgQuSkjOhoQNpZ7x00cuXa-NynpER-dyljlzJ2GeXxINdtB5__MTm7vR90MujWB_j41bE1WXDGc_l0cyEn6XV87TyTd-wLLiyEJw</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>Fader, Peter S.</creator><creator>Hardie, Bruce G. S.</creator><creator>Zeithammer, Robert</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200308</creationdate><title>Forecasting new product trial in a controlled test market environment</title><author>Fader, Peter S. ; Hardie, Bruce G. S. ; Zeithammer, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Calibration</topic><topic>Economic models</topic><topic>Economics</topic><topic>Error</topic><topic>Forecasts</topic><topic>Market</topic><topic>Marketing</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Model testing</topic><topic>new product sales forecasting</topic><topic>Packaged goods</topic><topic>Purchasing</topic><topic>Sales</topic><topic>Sales forecasting</topic><topic>Studies</topic><topic>test market</topic><topic>Test markets</topic><topic>trial and repeat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fader, Peter S.</creatorcontrib><creatorcontrib>Hardie, Bruce G. S.</creatorcontrib><creatorcontrib>Zeithammer, Robert</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fader, Peter S.</au><au>Hardie, Bruce G. S.</au><au>Zeithammer, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting new product trial in a controlled test market environment</atitle><jtitle>Journal of forecasting</jtitle><addtitle>J. Forecast</addtitle><date>2003-08</date><risdate>2003</risdate><volume>22</volume><issue>5</issue><spage>391</spage><epage>410</epage><pages>391-410</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><coden>JOFODV</coden><abstract>A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model ‘components’ on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/for.869</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2003-08, Vol.22 (5), p.391-410 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_miscellaneous_38538393 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global; Wiley-Blackwell Read & Publish Collection |
subjects | Calibration Economic models Economics Error Forecasts Market Marketing Mathematical models Methods Model testing new product sales forecasting Packaged goods Purchasing Sales Sales forecasting Studies test market Test markets trial and repeat |
title | Forecasting new product trial in a controlled test market environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20new%20product%20trial%20in%20a%20controlled%20test%20market%20environment&rft.jtitle=Journal%20of%20forecasting&rft.au=Fader,%20Peter%20S.&rft.date=2003-08&rft.volume=22&rft.issue=5&rft.spage=391&rft.epage=410&rft.pages=391-410&rft.issn=0277-6693&rft.eissn=1099-131X&rft.coden=JOFODV&rft_id=info:doi/10.1002/for.869&rft_dat=%3Cproquest_cross%3E38538393%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4179-c2ac4c7e1d711113b5c5fd68a4547c37e23bc7c831aa71aebfe1300fbbda02c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219199508&rft_id=info:pmid/&rfr_iscdi=true |