Loading…

Non-optimality of a linear combination of proportional and non-proportional reinsurance

For the subclass of reinsurance contracts with maximum deductible contained in the class of all bivariate comonotonic risk-exchange structures associated to a given risk, we consider optimality with respect to a long-term actuarial mean self-financing property and competitiveness of the insurance pr...

Full description

Saved in:
Bibliographic Details
Published in:Insurance, mathematics & economics mathematics & economics, 1999-05, Vol.24 (3), p.219-227
Main Author: Hurlimann, W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c411t-95cdd6ff6c9f9c68b46796af35898129888d97251f108d2ef0bd1ddc84215f823
container_end_page 227
container_issue 3
container_start_page 219
container_title Insurance, mathematics & economics
container_volume 24
creator Hurlimann, W
description For the subclass of reinsurance contracts with maximum deductible contained in the class of all bivariate comonotonic risk-exchange structures associated to a given risk, we consider optimality with respect to a long-term actuarial mean self-financing property and competitiveness of the insurance premium. For arbitrary varying risks, the linear combination of proportional and stop-loss reinsurance is not optimal unless it is a pure stop-loss contract, at least if the variance premium principle is used to set insurance prices. By known distribution of the risk, it is shown how an optimal deductible of a stop-loss contract can be determined. Some applications to insurance and finance are briefly mentioned.
doi_str_mv 10.1016/S0167-6687(98)00054-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38743397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668798000547</els_id><sourcerecordid>43369567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-95cdd6ff6c9f9c68b46796af35898129888d97251f108d2ef0bd1ddc84215f823</originalsourceid><addsrcrecordid>eNqFkEuLFTEQhYMoeB39CULjQnTRmqQ7j1qJDOOLQRcqLovcPDBDd9ImfQfuvzd9rwzoxkVVkco5h-Ij5Cmjrxhl8vXX1lQvpVYvQL-klIqxV_fIjmk19AIE3Ce7O8lD8qjWmyZiINWO_PicU5-XNc5miuuxy6Ez3RSTN6Wzed7HZNaY07ZfSl5y2V5m6kxyXWrWv5bFx1QPxSTrH5MHwUzVP_kzL8j3d1ffLj_011_ef7x8e93bkbG1B2GdkyFICwGs1PtRKpAmDEKDZhy01g4UFywwqh33ge4dc87qkTMRNB8uyPNzbjvk18HXFedYrZ8mk3w-VBy0GocBVBM--0d4kw-lXV2RU82UpCCaSJxFtuRaiw-4lEamHJFR3FjjiTVuIBE0nljjFv7p7Ct-8fbO5P0JyGzwFgfDx9aOrRgAtBFbDa2W7Y8Bcq7w5zq3sDfnMN-43UZfsNroG1MXi7cruhz_c85vfzqgMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208176095</pqid></control><display><type>article</type><title>Non-optimality of a linear combination of proportional and non-proportional reinsurance</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>Elsevier SD Backfile Mathematics</source><source>Elsevier</source><creator>Hurlimann, W</creator><creatorcontrib>Hurlimann, W</creatorcontrib><description>For the subclass of reinsurance contracts with maximum deductible contained in the class of all bivariate comonotonic risk-exchange structures associated to a given risk, we consider optimality with respect to a long-term actuarial mean self-financing property and competitiveness of the insurance premium. For arbitrary varying risks, the linear combination of proportional and stop-loss reinsurance is not optimal unless it is a pure stop-loss contract, at least if the variance premium principle is used to set insurance prices. By known distribution of the risk, it is shown how an optimal deductible of a stop-loss contract can be determined. Some applications to insurance and finance are briefly mentioned.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/S0167-6687(98)00054-7</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actuaries ; Comonotonicity ; Contracts ; Deductible coverage ; Hedging ; Inequality ; Inequality of Bowers ; Inequality of Kremer ; Inequality of Schmitter ; Insurance ; Linear models ; Mean self-financing property ; Optimal deductible ; Optimization ; Perfect hedge ; Reinsurance ; Risk ; Studies ; Total splitting risk</subject><ispartof>Insurance, mathematics &amp; economics, 1999-05, Vol.24 (3), p.219-227</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. May 28, 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c411t-95cdd6ff6c9f9c68b46796af35898129888d97251f108d2ef0bd1ddc84215f823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668798000547$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a24_3ay_3a1999_3ai_3a3_3ap_3a219-227.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hurlimann, W</creatorcontrib><title>Non-optimality of a linear combination of proportional and non-proportional reinsurance</title><title>Insurance, mathematics &amp; economics</title><description>For the subclass of reinsurance contracts with maximum deductible contained in the class of all bivariate comonotonic risk-exchange structures associated to a given risk, we consider optimality with respect to a long-term actuarial mean self-financing property and competitiveness of the insurance premium. For arbitrary varying risks, the linear combination of proportional and stop-loss reinsurance is not optimal unless it is a pure stop-loss contract, at least if the variance premium principle is used to set insurance prices. By known distribution of the risk, it is shown how an optimal deductible of a stop-loss contract can be determined. Some applications to insurance and finance are briefly mentioned.</description><subject>Actuaries</subject><subject>Comonotonicity</subject><subject>Contracts</subject><subject>Deductible coverage</subject><subject>Hedging</subject><subject>Inequality</subject><subject>Inequality of Bowers</subject><subject>Inequality of Kremer</subject><subject>Inequality of Schmitter</subject><subject>Insurance</subject><subject>Linear models</subject><subject>Mean self-financing property</subject><subject>Optimal deductible</subject><subject>Optimization</subject><subject>Perfect hedge</subject><subject>Reinsurance</subject><subject>Risk</subject><subject>Studies</subject><subject>Total splitting risk</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkEuLFTEQhYMoeB39CULjQnTRmqQ7j1qJDOOLQRcqLovcPDBDd9ImfQfuvzd9rwzoxkVVkco5h-Ij5Cmjrxhl8vXX1lQvpVYvQL-klIqxV_fIjmk19AIE3Ce7O8lD8qjWmyZiINWO_PicU5-XNc5miuuxy6Ez3RSTN6Wzed7HZNaY07ZfSl5y2V5m6kxyXWrWv5bFx1QPxSTrH5MHwUzVP_kzL8j3d1ffLj_011_ef7x8e93bkbG1B2GdkyFICwGs1PtRKpAmDEKDZhy01g4UFywwqh33ge4dc87qkTMRNB8uyPNzbjvk18HXFedYrZ8mk3w-VBy0GocBVBM--0d4kw-lXV2RU82UpCCaSJxFtuRaiw-4lEamHJFR3FjjiTVuIBE0nljjFv7p7Ct-8fbO5P0JyGzwFgfDx9aOrRgAtBFbDa2W7Y8Bcq7w5zq3sDfnMN-43UZfsNroG1MXi7cruhz_c85vfzqgMQ</recordid><startdate>19990528</startdate><enddate>19990528</enddate><creator>Hurlimann, W</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>19990528</creationdate><title>Non-optimality of a linear combination of proportional and non-proportional reinsurance</title><author>Hurlimann, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-95cdd6ff6c9f9c68b46796af35898129888d97251f108d2ef0bd1ddc84215f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Actuaries</topic><topic>Comonotonicity</topic><topic>Contracts</topic><topic>Deductible coverage</topic><topic>Hedging</topic><topic>Inequality</topic><topic>Inequality of Bowers</topic><topic>Inequality of Kremer</topic><topic>Inequality of Schmitter</topic><topic>Insurance</topic><topic>Linear models</topic><topic>Mean self-financing property</topic><topic>Optimal deductible</topic><topic>Optimization</topic><topic>Perfect hedge</topic><topic>Reinsurance</topic><topic>Risk</topic><topic>Studies</topic><topic>Total splitting risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurlimann, W</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurlimann, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-optimality of a linear combination of proportional and non-proportional reinsurance</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>1999-05-28</date><risdate>1999</risdate><volume>24</volume><issue>3</issue><spage>219</spage><epage>227</epage><pages>219-227</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>For the subclass of reinsurance contracts with maximum deductible contained in the class of all bivariate comonotonic risk-exchange structures associated to a given risk, we consider optimality with respect to a long-term actuarial mean self-financing property and competitiveness of the insurance premium. For arbitrary varying risks, the linear combination of proportional and stop-loss reinsurance is not optimal unless it is a pure stop-loss contract, at least if the variance premium principle is used to set insurance prices. By known distribution of the risk, it is shown how an optimal deductible of a stop-loss contract can be determined. Some applications to insurance and finance are briefly mentioned.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-6687(98)00054-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 1999-05, Vol.24 (3), p.219-227
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_38743397
source International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; Elsevier SD Backfile Mathematics; Elsevier
subjects Actuaries
Comonotonicity
Contracts
Deductible coverage
Hedging
Inequality
Inequality of Bowers
Inequality of Kremer
Inequality of Schmitter
Insurance
Linear models
Mean self-financing property
Optimal deductible
Optimization
Perfect hedge
Reinsurance
Risk
Studies
Total splitting risk
title Non-optimality of a linear combination of proportional and non-proportional reinsurance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-optimality%20of%20a%20linear%20combination%20of%20proportional%20and%20non-proportional%20reinsurance&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Hurlimann,%20W&rft.date=1999-05-28&rft.volume=24&rft.issue=3&rft.spage=219&rft.epage=227&rft.pages=219-227&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/S0167-6687(98)00054-7&rft_dat=%3Cproquest_cross%3E43369567%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-95cdd6ff6c9f9c68b46796af35898129888d97251f108d2ef0bd1ddc84215f823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208176095&rft_id=info:pmid/&rfr_iscdi=true