Loading…
Bayesian analysis of agricultural field experiments
The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, comple...
Saved in:
Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 1999, Vol.61 (4), p.691-746 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made. |
---|---|
ISSN: | 1369-7412 1467-9868 |
DOI: | 10.1111/1467-9868.00201 |