Loading…

Bayesian analysis of agricultural field experiments

The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, comple...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 1999, Vol.61 (4), p.691-746
Main Authors: Besag, J., Higdon, D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical-t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straight-forward. Some numerical comparisons with frequentist analyses are made.
ISSN:1369-7412
1467-9868
DOI:10.1111/1467-9868.00201