Loading…

On the optimal selection of portfolios under limited diversification

We address the problem of selecting portfolios which maximize the ratio of the average excess return to the standard deviation, among all those portfolios which comprise at most a pre-specified number, k, of securities. Under the assumptions of constant pairwise correlations and no short-selling, we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of banking & finance 1999-11, Vol.23 (11), p.1655-1666
Main Authors: Sankaran, Jayaram K., Patil, Ajay A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c572t-752176eda46e3362e8571d9fcfca234e3686ca429926a1ea19b7b36471237fb33
cites cdi_FETCH-LOGICAL-c572t-752176eda46e3362e8571d9fcfca234e3686ca429926a1ea19b7b36471237fb33
container_end_page 1666
container_issue 11
container_start_page 1655
container_title Journal of banking & finance
container_volume 23
creator Sankaran, Jayaram K.
Patil, Ajay A.
description We address the problem of selecting portfolios which maximize the ratio of the average excess return to the standard deviation, among all those portfolios which comprise at most a pre-specified number, k, of securities. Under the assumptions of constant pairwise correlations and no short-selling, we argue that the simple ranking procedure of Elton, Gruber, and Padberg effectively solves the problem for all values of k, and that as a function of k, the optimal ratio increases at a decreasing rate. We also clarify why further generalization or extension of our results to other situations is improbable.
doi_str_mv 10.1016/S0378-4266(99)00023-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38795346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378426699000230</els_id><sourcerecordid>38795346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-752176eda46e3362e8571d9fcfca234e3686ca429926a1ea19b7b36471237fb33</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EEqXwE5AiBgRDwB-JHU8IlU-pqAMwW65zVl2lcbDTSv33OC1iYGHw-YbnfXX3HkLnBN8QTPjtO2aiygvK-ZWU1xhjynJ8gEakEjTnTNBDNPpFjtFJjMsE4YqwEXqYtVm_gMx3vVvpJovQgOmdbzNvs86H3vrG-Zit2xpC1riV66HOareBEJ11Rg_sKTqyuolw9vOP0efT48fkJZ_Onl8n99PclIL2uSgpERxqXXBgjFOoSkFqaY01mrICGK-40QWVknJNQBM5F3PGC0EoE3bO2Bhd7n274L_WEHu1ctFA0-gW_DoqVglZsoIn8OIPuPTr0KbZFJFFJSUXA1TuIRN8jAGs6kLKIGwVwWoIVu2CVUNqSkq1C1bhpHvb6wJ0YH5FALCcW9dqtVEs7ZPKNj0ik5RpN7QklW5oeFkqwpPtol8lv7u9H6ToNg6CisZBa6B2Id1C1d79M9E3PrCYwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194899676</pqid></control><display><type>article</type><title>On the optimal selection of portfolios under limited diversification</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Sankaran, Jayaram K. ; Patil, Ajay A.</creator><creatorcontrib>Sankaran, Jayaram K. ; Patil, Ajay A.</creatorcontrib><description>We address the problem of selecting portfolios which maximize the ratio of the average excess return to the standard deviation, among all those portfolios which comprise at most a pre-specified number, k, of securities. Under the assumptions of constant pairwise correlations and no short-selling, we argue that the simple ranking procedure of Elton, Gruber, and Padberg effectively solves the problem for all values of k, and that as a function of k, the optimal ratio increases at a decreasing rate. We also clarify why further generalization or extension of our results to other situations is improbable.</description><identifier>ISSN: 0378-4266</identifier><identifier>EISSN: 1872-6372</identifier><identifier>DOI: 10.1016/S0378-4266(99)00023-0</identifier><identifier>CODEN: JBFIDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Banking ; Correlation analysis ; Diversification ; Fixed transactions costs ; Investment policy ; Limited diversification ; Marginal benefits from diversification ; Mathematical models ; Mean–variance efficient portfolios ; Optimal portfolio selection ; Optimization ; Portfolio management ; Portfolio selection ; Ranking algorithms ; Securities issues ; Stock returns ; Studies ; Transaction costs</subject><ispartof>Journal of banking &amp; finance, 1999-11, Vol.23 (11), p.1655-1666</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-752176eda46e3362e8571d9fcfca234e3686ca429926a1ea19b7b36471237fb33</citedby><cites>FETCH-LOGICAL-c572t-752176eda46e3362e8571d9fcfca234e3686ca429926a1ea19b7b36471237fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejbfina/v_3a23_3ay_3a1999_3ai_3a11_3ap_3a1655-1666.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Sankaran, Jayaram K.</creatorcontrib><creatorcontrib>Patil, Ajay A.</creatorcontrib><title>On the optimal selection of portfolios under limited diversification</title><title>Journal of banking &amp; finance</title><description>We address the problem of selecting portfolios which maximize the ratio of the average excess return to the standard deviation, among all those portfolios which comprise at most a pre-specified number, k, of securities. Under the assumptions of constant pairwise correlations and no short-selling, we argue that the simple ranking procedure of Elton, Gruber, and Padberg effectively solves the problem for all values of k, and that as a function of k, the optimal ratio increases at a decreasing rate. We also clarify why further generalization or extension of our results to other situations is improbable.</description><subject>Algorithms</subject><subject>Banking</subject><subject>Correlation analysis</subject><subject>Diversification</subject><subject>Fixed transactions costs</subject><subject>Investment policy</subject><subject>Limited diversification</subject><subject>Marginal benefits from diversification</subject><subject>Mathematical models</subject><subject>Mean–variance efficient portfolios</subject><subject>Optimal portfolio selection</subject><subject>Optimization</subject><subject>Portfolio management</subject><subject>Portfolio selection</subject><subject>Ranking algorithms</subject><subject>Securities issues</subject><subject>Stock returns</subject><subject>Studies</subject><subject>Transaction costs</subject><issn>0378-4266</issn><issn>1872-6372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkT1PwzAQhi0EEqXwE5AiBgRDwB-JHU8IlU-pqAMwW65zVl2lcbDTSv33OC1iYGHw-YbnfXX3HkLnBN8QTPjtO2aiygvK-ZWU1xhjynJ8gEakEjTnTNBDNPpFjtFJjMsE4YqwEXqYtVm_gMx3vVvpJovQgOmdbzNvs86H3vrG-Zit2xpC1riV66HOareBEJ11Rg_sKTqyuolw9vOP0efT48fkJZ_Onl8n99PclIL2uSgpERxqXXBgjFOoSkFqaY01mrICGK-40QWVknJNQBM5F3PGC0EoE3bO2Bhd7n274L_WEHu1ctFA0-gW_DoqVglZsoIn8OIPuPTr0KbZFJFFJSUXA1TuIRN8jAGs6kLKIGwVwWoIVu2CVUNqSkq1C1bhpHvb6wJ0YH5FALCcW9dqtVEs7ZPKNj0ik5RpN7QklW5oeFkqwpPtol8lv7u9H6ToNg6CisZBa6B2Id1C1d79M9E3PrCYwQ</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Sankaran, Jayaram K.</creator><creator>Patil, Ajay A.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19991101</creationdate><title>On the optimal selection of portfolios under limited diversification</title><author>Sankaran, Jayaram K. ; Patil, Ajay A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-752176eda46e3362e8571d9fcfca234e3686ca429926a1ea19b7b36471237fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Banking</topic><topic>Correlation analysis</topic><topic>Diversification</topic><topic>Fixed transactions costs</topic><topic>Investment policy</topic><topic>Limited diversification</topic><topic>Marginal benefits from diversification</topic><topic>Mathematical models</topic><topic>Mean–variance efficient portfolios</topic><topic>Optimal portfolio selection</topic><topic>Optimization</topic><topic>Portfolio management</topic><topic>Portfolio selection</topic><topic>Ranking algorithms</topic><topic>Securities issues</topic><topic>Stock returns</topic><topic>Studies</topic><topic>Transaction costs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sankaran, Jayaram K.</creatorcontrib><creatorcontrib>Patil, Ajay A.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of banking &amp; finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sankaran, Jayaram K.</au><au>Patil, Ajay A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the optimal selection of portfolios under limited diversification</atitle><jtitle>Journal of banking &amp; finance</jtitle><date>1999-11-01</date><risdate>1999</risdate><volume>23</volume><issue>11</issue><spage>1655</spage><epage>1666</epage><pages>1655-1666</pages><issn>0378-4266</issn><eissn>1872-6372</eissn><coden>JBFIDO</coden><abstract>We address the problem of selecting portfolios which maximize the ratio of the average excess return to the standard deviation, among all those portfolios which comprise at most a pre-specified number, k, of securities. Under the assumptions of constant pairwise correlations and no short-selling, we argue that the simple ranking procedure of Elton, Gruber, and Padberg effectively solves the problem for all values of k, and that as a function of k, the optimal ratio increases at a decreasing rate. We also clarify why further generalization or extension of our results to other situations is improbable.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-4266(99)00023-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4266
ispartof Journal of banking & finance, 1999-11, Vol.23 (11), p.1655-1666
issn 0378-4266
1872-6372
language eng
recordid cdi_proquest_miscellaneous_38795346
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection 2022-2024
subjects Algorithms
Banking
Correlation analysis
Diversification
Fixed transactions costs
Investment policy
Limited diversification
Marginal benefits from diversification
Mathematical models
Mean–variance efficient portfolios
Optimal portfolio selection
Optimization
Portfolio management
Portfolio selection
Ranking algorithms
Securities issues
Stock returns
Studies
Transaction costs
title On the optimal selection of portfolios under limited diversification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20optimal%20selection%20of%20portfolios%20under%20limited%20diversification&rft.jtitle=Journal%20of%20banking%20&%20finance&rft.au=Sankaran,%20Jayaram%20K.&rft.date=1999-11-01&rft.volume=23&rft.issue=11&rft.spage=1655&rft.epage=1666&rft.pages=1655-1666&rft.issn=0378-4266&rft.eissn=1872-6372&rft.coden=JBFIDO&rft_id=info:doi/10.1016/S0378-4266(99)00023-0&rft_dat=%3Cproquest_cross%3E38795346%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-752176eda46e3362e8571d9fcfca234e3686ca429926a1ea19b7b36471237fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194899676&rft_id=info:pmid/&rfr_iscdi=true