Loading…

An evaluation of volatility forecasting techniques

The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of banking & finance 1996-04, Vol.20 (3), p.419-438
Main Authors: Brailsford, Timothy J., Faff, Robert W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83
cites cdi_FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83
container_end_page 438
container_issue 3
container_start_page 419
container_title Journal of banking & finance
container_volume 20
creator Brailsford, Timothy J.
Faff, Robert W.
description The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task.
doi_str_mv 10.1016/0378-4266(95)00015-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38924119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0378426695000151</els_id><sourcerecordid>15585305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83</originalsourceid><addsrcrecordid>eNqFkT9vHCEQxZEVS7nY_gYuVimipNiEWWCBJpJl5a8spbHrEXCzNqe95QJ7J923D5uLXKRIisdM8Xsz8GDsGvh74NB_4EKbVnZ9_9aqd5xzUC2csRUY3bW90N0LtnpGXrJXpWwqxA2IFetupoYObty7OaapSUNzSGPtxzgfmyFlCq7McXpsZgpPU_y5p3LJzgc3Frr6Uy_Yw-dP97df27sfX77d3ty1QYGdW2dJmcFraY0WQ99LRYErqi1X2nBDygqvFSjw2kovnJfSe70WUmsnvREX7M1p7i6nZe-M21gCjaObKO0LCmM7CWD_C4JSRgmuKvj6L3CT9nmqj0Cw0ljdKaiQPEEhp1IyDbjLcevyEYHjEjcuWeKSJVqFv-PGxfb9ZMu0o_DsIaKNH-Lk8IDCdbwexyqwtq8lVomqXZUEi1IYfJq3ddjH0zCq-R4iZSwh0hRoHeuPzLhO8d-3-QXZFp2D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194897251</pqid></control><display><type>article</type><title>An evaluation of volatility forecasting techniques</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Journals</source><creator>Brailsford, Timothy J. ; Faff, Robert W.</creator><creatorcontrib>Brailsford, Timothy J. ; Faff, Robert W.</creatorcontrib><description>The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task.</description><identifier>ISSN: 0378-4266</identifier><identifier>EISSN: 1872-6372</identifier><identifier>DOI: 10.1016/0378-4266(95)00015-1</identifier><identifier>CODEN: JBFIDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ARCH models ; Australia ; Economic forecasting ; Finance ; Forecasting ; Forecasting techniques ; Forecasts ; Mathematical models ; Regression analysis ; Securities markets ; Stock exchange ; Stock market volatility ; Studies ; Volatility</subject><ispartof>Journal of banking &amp; finance, 1996-04, Vol.20 (3), p.419-438</ispartof><rights>1996</rights><rights>Copyright Elsevier Sequoia S.A. Apr 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83</citedby><cites>FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901,33199,33200</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejbfina/v_3a20_3ay_3a1996_3ai_3a3_3ap_3a419-438.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Brailsford, Timothy J.</creatorcontrib><creatorcontrib>Faff, Robert W.</creatorcontrib><title>An evaluation of volatility forecasting techniques</title><title>Journal of banking &amp; finance</title><description>The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task.</description><subject>ARCH models</subject><subject>Australia</subject><subject>Economic forecasting</subject><subject>Finance</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Forecasts</subject><subject>Mathematical models</subject><subject>Regression analysis</subject><subject>Securities markets</subject><subject>Stock exchange</subject><subject>Stock market volatility</subject><subject>Studies</subject><subject>Volatility</subject><issn>0378-4266</issn><issn>1872-6372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkT9vHCEQxZEVS7nY_gYuVimipNiEWWCBJpJl5a8spbHrEXCzNqe95QJ7J923D5uLXKRIisdM8Xsz8GDsGvh74NB_4EKbVnZ9_9aqd5xzUC2csRUY3bW90N0LtnpGXrJXpWwqxA2IFetupoYObty7OaapSUNzSGPtxzgfmyFlCq7McXpsZgpPU_y5p3LJzgc3Frr6Uy_Yw-dP97df27sfX77d3ty1QYGdW2dJmcFraY0WQ99LRYErqi1X2nBDygqvFSjw2kovnJfSe70WUmsnvREX7M1p7i6nZe-M21gCjaObKO0LCmM7CWD_C4JSRgmuKvj6L3CT9nmqj0Cw0ljdKaiQPEEhp1IyDbjLcevyEYHjEjcuWeKSJVqFv-PGxfb9ZMu0o_DsIaKNH-Lk8IDCdbwexyqwtq8lVomqXZUEi1IYfJq3ddjH0zCq-R4iZSwh0hRoHeuPzLhO8d-3-QXZFp2D</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>Brailsford, Timothy J.</creator><creator>Faff, Robert W.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>19960401</creationdate><title>An evaluation of volatility forecasting techniques</title><author>Brailsford, Timothy J. ; Faff, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ARCH models</topic><topic>Australia</topic><topic>Economic forecasting</topic><topic>Finance</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Forecasts</topic><topic>Mathematical models</topic><topic>Regression analysis</topic><topic>Securities markets</topic><topic>Stock exchange</topic><topic>Stock market volatility</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brailsford, Timothy J.</creatorcontrib><creatorcontrib>Faff, Robert W.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of banking &amp; finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brailsford, Timothy J.</au><au>Faff, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of volatility forecasting techniques</atitle><jtitle>Journal of banking &amp; finance</jtitle><date>1996-04-01</date><risdate>1996</risdate><volume>20</volume><issue>3</issue><spage>419</spage><epage>438</epage><pages>419-438</pages><issn>0378-4266</issn><eissn>1872-6372</eissn><coden>JBFIDO</coden><abstract>The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0378-4266(95)00015-1</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4266
ispartof Journal of banking & finance, 1996-04, Vol.20 (3), p.419-438
issn 0378-4266
1872-6372
language eng
recordid cdi_proquest_miscellaneous_38924119
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Journals
subjects ARCH models
Australia
Economic forecasting
Finance
Forecasting
Forecasting techniques
Forecasts
Mathematical models
Regression analysis
Securities markets
Stock exchange
Stock market volatility
Studies
Volatility
title An evaluation of volatility forecasting techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20volatility%20forecasting%20techniques&rft.jtitle=Journal%20of%20banking%20&%20finance&rft.au=Brailsford,%20Timothy%20J.&rft.date=1996-04-01&rft.volume=20&rft.issue=3&rft.spage=419&rft.epage=438&rft.pages=419-438&rft.issn=0378-4266&rft.eissn=1872-6372&rft.coden=JBFIDO&rft_id=info:doi/10.1016/0378-4266(95)00015-1&rft_dat=%3Cproquest_cross%3E15585305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194897251&rft_id=info:pmid/&rfr_iscdi=true