Loading…
An evaluation of volatility forecasting techniques
The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simp...
Saved in:
Published in: | Journal of banking & finance 1996-04, Vol.20 (3), p.419-438 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83 |
container_end_page | 438 |
container_issue | 3 |
container_start_page | 419 |
container_title | Journal of banking & finance |
container_volume | 20 |
creator | Brailsford, Timothy J. Faff, Robert W. |
description | The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task. |
doi_str_mv | 10.1016/0378-4266(95)00015-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38924119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0378426695000151</els_id><sourcerecordid>15585305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83</originalsourceid><addsrcrecordid>eNqFkT9vHCEQxZEVS7nY_gYuVimipNiEWWCBJpJl5a8spbHrEXCzNqe95QJ7J923D5uLXKRIisdM8Xsz8GDsGvh74NB_4EKbVnZ9_9aqd5xzUC2csRUY3bW90N0LtnpGXrJXpWwqxA2IFetupoYObty7OaapSUNzSGPtxzgfmyFlCq7McXpsZgpPU_y5p3LJzgc3Frr6Uy_Yw-dP97df27sfX77d3ty1QYGdW2dJmcFraY0WQ99LRYErqi1X2nBDygqvFSjw2kovnJfSe70WUmsnvREX7M1p7i6nZe-M21gCjaObKO0LCmM7CWD_C4JSRgmuKvj6L3CT9nmqj0Cw0ljdKaiQPEEhp1IyDbjLcevyEYHjEjcuWeKSJVqFv-PGxfb9ZMu0o_DsIaKNH-Lk8IDCdbwexyqwtq8lVomqXZUEi1IYfJq3ddjH0zCq-R4iZSwh0hRoHeuPzLhO8d-3-QXZFp2D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194897251</pqid></control><display><type>article</type><title>An evaluation of volatility forecasting techniques</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Journals</source><creator>Brailsford, Timothy J. ; Faff, Robert W.</creator><creatorcontrib>Brailsford, Timothy J. ; Faff, Robert W.</creatorcontrib><description>The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task.</description><identifier>ISSN: 0378-4266</identifier><identifier>EISSN: 1872-6372</identifier><identifier>DOI: 10.1016/0378-4266(95)00015-1</identifier><identifier>CODEN: JBFIDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ARCH models ; Australia ; Economic forecasting ; Finance ; Forecasting ; Forecasting techniques ; Forecasts ; Mathematical models ; Regression analysis ; Securities markets ; Stock exchange ; Stock market volatility ; Studies ; Volatility</subject><ispartof>Journal of banking & finance, 1996-04, Vol.20 (3), p.419-438</ispartof><rights>1996</rights><rights>Copyright Elsevier Sequoia S.A. Apr 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83</citedby><cites>FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901,33199,33200</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejbfina/v_3a20_3ay_3a1996_3ai_3a3_3ap_3a419-438.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Brailsford, Timothy J.</creatorcontrib><creatorcontrib>Faff, Robert W.</creatorcontrib><title>An evaluation of volatility forecasting techniques</title><title>Journal of banking & finance</title><description>The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task.</description><subject>ARCH models</subject><subject>Australia</subject><subject>Economic forecasting</subject><subject>Finance</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Forecasts</subject><subject>Mathematical models</subject><subject>Regression analysis</subject><subject>Securities markets</subject><subject>Stock exchange</subject><subject>Stock market volatility</subject><subject>Studies</subject><subject>Volatility</subject><issn>0378-4266</issn><issn>1872-6372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkT9vHCEQxZEVS7nY_gYuVimipNiEWWCBJpJl5a8spbHrEXCzNqe95QJ7J923D5uLXKRIisdM8Xsz8GDsGvh74NB_4EKbVnZ9_9aqd5xzUC2csRUY3bW90N0LtnpGXrJXpWwqxA2IFetupoYObty7OaapSUNzSGPtxzgfmyFlCq7McXpsZgpPU_y5p3LJzgc3Frr6Uy_Yw-dP97df27sfX77d3ty1QYGdW2dJmcFraY0WQ99LRYErqi1X2nBDygqvFSjw2kovnJfSe70WUmsnvREX7M1p7i6nZe-M21gCjaObKO0LCmM7CWD_C4JSRgmuKvj6L3CT9nmqj0Cw0ljdKaiQPEEhp1IyDbjLcevyEYHjEjcuWeKSJVqFv-PGxfb9ZMu0o_DsIaKNH-Lk8IDCdbwexyqwtq8lVomqXZUEi1IYfJq3ddjH0zCq-R4iZSwh0hRoHeuPzLhO8d-3-QXZFp2D</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>Brailsford, Timothy J.</creator><creator>Faff, Robert W.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>19960401</creationdate><title>An evaluation of volatility forecasting techniques</title><author>Brailsford, Timothy J. ; Faff, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ARCH models</topic><topic>Australia</topic><topic>Economic forecasting</topic><topic>Finance</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Forecasts</topic><topic>Mathematical models</topic><topic>Regression analysis</topic><topic>Securities markets</topic><topic>Stock exchange</topic><topic>Stock market volatility</topic><topic>Studies</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brailsford, Timothy J.</creatorcontrib><creatorcontrib>Faff, Robert W.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of banking & finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brailsford, Timothy J.</au><au>Faff, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of volatility forecasting techniques</atitle><jtitle>Journal of banking & finance</jtitle><date>1996-04-01</date><risdate>1996</risdate><volume>20</volume><issue>3</issue><spage>419</spage><epage>438</epage><pages>419-438</pages><issn>0378-4266</issn><eissn>1872-6372</eissn><coden>JBFIDO</coden><abstract>The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0378-4266(95)00015-1</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4266 |
ispartof | Journal of banking & finance, 1996-04, Vol.20 (3), p.419-438 |
issn | 0378-4266 1872-6372 |
language | eng |
recordid | cdi_proquest_miscellaneous_38924119 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Journals |
subjects | ARCH models Australia Economic forecasting Finance Forecasting Forecasting techniques Forecasts Mathematical models Regression analysis Securities markets Stock exchange Stock market volatility Studies Volatility |
title | An evaluation of volatility forecasting techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20volatility%20forecasting%20techniques&rft.jtitle=Journal%20of%20banking%20&%20finance&rft.au=Brailsford,%20Timothy%20J.&rft.date=1996-04-01&rft.volume=20&rft.issue=3&rft.spage=419&rft.epage=438&rft.pages=419-438&rft.issn=0378-4266&rft.eissn=1872-6372&rft.coden=JBFIDO&rft_id=info:doi/10.1016/0378-4266(95)00015-1&rft_dat=%3Cproquest_cross%3E15585305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-a9e58fb749873f6645ec05e3f6057808e593b75151b794b3ab44bb7d3477a4b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194897251&rft_id=info:pmid/&rfr_iscdi=true |