Loading…
Efficient Computation of Behavior Strategies
We propose thesequence formas a new strategic description for an extensive game with perfect recall. It is similar to the normal form but has linear instead of exponential complexity and allows a direct representation and efficient computation of behavior strategies. Pure strategies and their mixed...
Saved in:
Published in: | Games and economic behavior 1996-06, Vol.14 (2), p.220-246 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-eb50955deef13f33110a444d85847f63c88f35f6075cd0934bb6b81cb2f59723 |
---|---|
cites | |
container_end_page | 246 |
container_issue | 2 |
container_start_page | 220 |
container_title | Games and economic behavior |
container_volume | 14 |
creator | von Stengel, Bernhard |
description | We propose thesequence formas a new strategic description for an extensive game with perfect recall. It is similar to the normal form but has linear instead of exponential complexity and allows a direct representation and efficient computation of behavior strategies. Pure strategies and their mixed strategy probabilities are replaced by sequences of consecutive choices and their realization probabilities. A zero-sum game is solved by a corresponding linear program that has linear size in the size of the game tree. General two-person games are studied in the paper by Kolleret al., 1996 (Games Econ. Behav.14, 247–259).Journal of Economic LiteratureClassification Number: C72. |
doi_str_mv | 10.1006/game.1996.0050 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38932141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899825696900500</els_id><sourcerecordid>38932141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-eb50955deef13f33110a444d85847f63c88f35f6075cd0934bb6b81cb2f59723</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EEuWxMndiIuX6ldgjVDxViQF2y3Guwahpgu1W4t8Tq4iN4fp6ON-nq0PIBYUFBaiv322PC6p1vQCQcEBmFDRUTDT8kMxAaV0pJutjcpLSJ0wIa2BGru68Dy7gJs-XQz9us81h2MwHP7_FD7sLQ5y_5mgzvgdMZ-TI23XC8999St7u796Wj9Xq5eFpebOqnBB1rrCVoKXsED3lnnNKwQohOiWVaHzNnVKeS19DI10Hmou2rVtFXcu81A3jp-RyXzvG4WuLKZs-JIfrtd3gsE2GK80ZFXQCF3vQxSGliN6MMfQ2fhsKpjgxxYkpTkxxMgWe94GII7o_GhEL2KLZGW6pmJ7v8ik5bsM0bJqxbAaGidp85H4qU_synFTsAkaTikiHXYjosumG8N8dPzF4f9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38932141</pqid></control><display><type>article</type><title>Efficient Computation of Behavior Strategies</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Journals</source><creator>von Stengel, Bernhard</creator><creatorcontrib>von Stengel, Bernhard</creatorcontrib><description>We propose thesequence formas a new strategic description for an extensive game with perfect recall. It is similar to the normal form but has linear instead of exponential complexity and allows a direct representation and efficient computation of behavior strategies. Pure strategies and their mixed strategy probabilities are replaced by sequences of consecutive choices and their realization probabilities. A zero-sum game is solved by a corresponding linear program that has linear size in the size of the game tree. General two-person games are studied in the paper by Kolleret al., 1996 (Games Econ. Behav.14, 247–259).Journal of Economic LiteratureClassification Number: C72.</description><identifier>ISSN: 0899-8256</identifier><identifier>EISSN: 1090-2473</identifier><identifier>DOI: 10.1006/game.1996.0050</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Economic analysis ; Economic behaviour ; Economic efficiency ; Game theory</subject><ispartof>Games and economic behavior, 1996-06, Vol.14 (2), p.220-246</ispartof><rights>1996 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-eb50955deef13f33110a444d85847f63c88f35f6075cd0934bb6b81cb2f59723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,33201</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeegamebe/v_3a14_3ay_3a1996_3ai_3a2_3ap_3a220-246.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>von Stengel, Bernhard</creatorcontrib><title>Efficient Computation of Behavior Strategies</title><title>Games and economic behavior</title><description>We propose thesequence formas a new strategic description for an extensive game with perfect recall. It is similar to the normal form but has linear instead of exponential complexity and allows a direct representation and efficient computation of behavior strategies. Pure strategies and their mixed strategy probabilities are replaced by sequences of consecutive choices and their realization probabilities. A zero-sum game is solved by a corresponding linear program that has linear size in the size of the game tree. General two-person games are studied in the paper by Kolleret al., 1996 (Games Econ. Behav.14, 247–259).Journal of Economic LiteratureClassification Number: C72.</description><subject>Economic analysis</subject><subject>Economic behaviour</subject><subject>Economic efficiency</subject><subject>Game theory</subject><issn>0899-8256</issn><issn>1090-2473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp1kDtPwzAURi0EEuWxMndiIuX6ldgjVDxViQF2y3Guwahpgu1W4t8Tq4iN4fp6ON-nq0PIBYUFBaiv322PC6p1vQCQcEBmFDRUTDT8kMxAaV0pJutjcpLSJ0wIa2BGru68Dy7gJs-XQz9us81h2MwHP7_FD7sLQ5y_5mgzvgdMZ-TI23XC8999St7u796Wj9Xq5eFpebOqnBB1rrCVoKXsED3lnnNKwQohOiWVaHzNnVKeS19DI10Hmou2rVtFXcu81A3jp-RyXzvG4WuLKZs-JIfrtd3gsE2GK80ZFXQCF3vQxSGliN6MMfQ2fhsKpjgxxYkpTkxxMgWe94GII7o_GhEL2KLZGW6pmJ7v8ik5bsM0bJqxbAaGidp85H4qU_synFTsAkaTikiHXYjosumG8N8dPzF4f9o</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>von Stengel, Bernhard</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19960601</creationdate><title>Efficient Computation of Behavior Strategies</title><author>von Stengel, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-eb50955deef13f33110a444d85847f63c88f35f6075cd0934bb6b81cb2f59723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Economic analysis</topic><topic>Economic behaviour</topic><topic>Economic efficiency</topic><topic>Game theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Stengel, Bernhard</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Games and economic behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Stengel, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Computation of Behavior Strategies</atitle><jtitle>Games and economic behavior</jtitle><date>1996-06-01</date><risdate>1996</risdate><volume>14</volume><issue>2</issue><spage>220</spage><epage>246</epage><pages>220-246</pages><issn>0899-8256</issn><eissn>1090-2473</eissn><abstract>We propose thesequence formas a new strategic description for an extensive game with perfect recall. It is similar to the normal form but has linear instead of exponential complexity and allows a direct representation and efficient computation of behavior strategies. Pure strategies and their mixed strategy probabilities are replaced by sequences of consecutive choices and their realization probabilities. A zero-sum game is solved by a corresponding linear program that has linear size in the size of the game tree. General two-person games are studied in the paper by Kolleret al., 1996 (Games Econ. Behav.14, 247–259).Journal of Economic LiteratureClassification Number: C72.</abstract><pub>Elsevier Inc</pub><doi>10.1006/game.1996.0050</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8256 |
ispartof | Games and economic behavior, 1996-06, Vol.14 (2), p.220-246 |
issn | 0899-8256 1090-2473 |
language | eng |
recordid | cdi_proquest_miscellaneous_38932141 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Journals |
subjects | Economic analysis Economic behaviour Economic efficiency Game theory |
title | Efficient Computation of Behavior Strategies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Computation%20of%20Behavior%20Strategies&rft.jtitle=Games%20and%20economic%20behavior&rft.au=von%20Stengel,%20Bernhard&rft.date=1996-06-01&rft.volume=14&rft.issue=2&rft.spage=220&rft.epage=246&rft.pages=220-246&rft.issn=0899-8256&rft.eissn=1090-2473&rft_id=info:doi/10.1006/game.1996.0050&rft_dat=%3Cproquest_cross%3E38932141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-eb50955deef13f33110a444d85847f63c88f35f6075cd0934bb6b81cb2f59723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=38932141&rft_id=info:pmid/&rfr_iscdi=true |