Loading…

Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms

This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tab...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence 1996-07, Vol.84 (1), p.339-354
Main Authors: Brooks, R.R., Iyengar, S.S., Chen, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3
cites cdi_FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3
container_end_page 354
container_issue 1
container_start_page 339
container_title Artificial intelligence
container_volume 84
creator Brooks, R.R.
Iyengar, S.S.
Chen, J.
description This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results.
doi_str_mv 10.1016/0004-3702(96)00012-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_39029269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0004370296000124</els_id><sourcerecordid>26398469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMouK5-Aw85iR6qSZptm4uwLP6DBS96lPA2eV0j3WRNWmG_ve1WPOpp3g9mBt4Qcs7ZNWe8uGGMySwvmbhUxVUPXGTygEx4VYqsVIIfksmv5ZicpPTRY64Un5C3edeGDbTOUBNixKY_g6fgLTXQuFUcOdTUB5d2NKFPIdKIYJ1fJ9qlXig2rkW6Ro9DETTrEF37vkmn5KiGJuHZj07J6_3dy-IxWz4_PC3my8xILtqstLmRUGClBM5qqFZMFbaGVWU4n3FrKitBlCWUhkuwBQAgClZxUDUDrCGfkouxdxvDZ4ep1RuXDDYNeAxd0rliQolC_WsURa4quTfK0WhiSClirbfRbSDuNGd6GF0Pi-phUa32wIWWfex2jGH_7ZfDqJNx6A1aF9G02gb3d8E3_O6LJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26398469</pqid></control><display><type>article</type><title>Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><creator>Brooks, R.R. ; Iyengar, S.S. ; Chen, J.</creator><creatorcontrib>Brooks, R.R. ; Iyengar, S.S. ; Chen, J.</creatorcontrib><description>This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/0004-3702(96)00012-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Correlation ; Genetic algorithms ; Image matching ; Noise reduction ; Sensor fusion ; Tabu search</subject><ispartof>Artificial intelligence, 1996-07, Vol.84 (1), p.339-354</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3</citedby><cites>FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,33203</link.rule.ids></links><search><creatorcontrib>Brooks, R.R.</creatorcontrib><creatorcontrib>Iyengar, S.S.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><title>Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms</title><title>Artificial intelligence</title><description>This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results.</description><subject>Artificial intelligence</subject><subject>Correlation</subject><subject>Genetic algorithms</subject><subject>Image matching</subject><subject>Noise reduction</subject><subject>Sensor fusion</subject><subject>Tabu search</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkE9LxDAUxIMouK5-Aw85iR6qSZptm4uwLP6DBS96lPA2eV0j3WRNWmG_ve1WPOpp3g9mBt4Qcs7ZNWe8uGGMySwvmbhUxVUPXGTygEx4VYqsVIIfksmv5ZicpPTRY64Un5C3edeGDbTOUBNixKY_g6fgLTXQuFUcOdTUB5d2NKFPIdKIYJ1fJ9qlXig2rkW6Ro9DETTrEF37vkmn5KiGJuHZj07J6_3dy-IxWz4_PC3my8xILtqstLmRUGClBM5qqFZMFbaGVWU4n3FrKitBlCWUhkuwBQAgClZxUDUDrCGfkouxdxvDZ4ep1RuXDDYNeAxd0rliQolC_WsURa4quTfK0WhiSClirbfRbSDuNGd6GF0Pi-phUa32wIWWfex2jGH_7ZfDqJNx6A1aF9G02gb3d8E3_O6LJA</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>Brooks, R.R.</creator><creator>Iyengar, S.S.</creator><creator>Chen, J.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19960701</creationdate><title>Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms</title><author>Brooks, R.R. ; Iyengar, S.S. ; Chen, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial intelligence</topic><topic>Correlation</topic><topic>Genetic algorithms</topic><topic>Image matching</topic><topic>Noise reduction</topic><topic>Sensor fusion</topic><topic>Tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, R.R.</creatorcontrib><creatorcontrib>Iyengar, S.S.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, R.R.</au><au>Iyengar, S.S.</au><au>Chen, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms</atitle><jtitle>Artificial intelligence</jtitle><date>1996-07-01</date><risdate>1996</risdate><volume>84</volume><issue>1</issue><spage>339</spage><epage>354</epage><pages>339-354</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0004-3702(96)00012-4</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 1996-07, Vol.84 (1), p.339-354
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_miscellaneous_39029269
source International Bibliography of the Social Sciences (IBSS); Elsevier
subjects Artificial intelligence
Correlation
Genetic algorithms
Image matching
Noise reduction
Sensor fusion
Tabu search
title Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20correlation%20and%20calibration%20of%20noisy%20sensor%20readings%20using%20elite%20genetic%20algorithms&rft.jtitle=Artificial%20intelligence&rft.au=Brooks,%20R.R.&rft.date=1996-07-01&rft.volume=84&rft.issue=1&rft.spage=339&rft.epage=354&rft.pages=339-354&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/0004-3702(96)00012-4&rft_dat=%3Cproquest_cross%3E26398469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26398469&rft_id=info:pmid/&rfr_iscdi=true