Loading…
Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms
This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tab...
Saved in:
Published in: | Artificial intelligence 1996-07, Vol.84 (1), p.339-354 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3 |
container_end_page | 354 |
container_issue | 1 |
container_start_page | 339 |
container_title | Artificial intelligence |
container_volume | 84 |
creator | Brooks, R.R. Iyengar, S.S. Chen, J. |
description | This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. |
doi_str_mv | 10.1016/0004-3702(96)00012-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_39029269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0004370296000124</els_id><sourcerecordid>26398469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMouK5-Aw85iR6qSZptm4uwLP6DBS96lPA2eV0j3WRNWmG_ve1WPOpp3g9mBt4Qcs7ZNWe8uGGMySwvmbhUxVUPXGTygEx4VYqsVIIfksmv5ZicpPTRY64Un5C3edeGDbTOUBNixKY_g6fgLTXQuFUcOdTUB5d2NKFPIdKIYJ1fJ9qlXig2rkW6Ro9DETTrEF37vkmn5KiGJuHZj07J6_3dy-IxWz4_PC3my8xILtqstLmRUGClBM5qqFZMFbaGVWU4n3FrKitBlCWUhkuwBQAgClZxUDUDrCGfkouxdxvDZ4ep1RuXDDYNeAxd0rliQolC_WsURa4quTfK0WhiSClirbfRbSDuNGd6GF0Pi-phUa32wIWWfex2jGH_7ZfDqJNx6A1aF9G02gb3d8E3_O6LJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26398469</pqid></control><display><type>article</type><title>Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><creator>Brooks, R.R. ; Iyengar, S.S. ; Chen, J.</creator><creatorcontrib>Brooks, R.R. ; Iyengar, S.S. ; Chen, J.</creatorcontrib><description>This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/0004-3702(96)00012-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Correlation ; Genetic algorithms ; Image matching ; Noise reduction ; Sensor fusion ; Tabu search</subject><ispartof>Artificial intelligence, 1996-07, Vol.84 (1), p.339-354</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3</citedby><cites>FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,33203</link.rule.ids></links><search><creatorcontrib>Brooks, R.R.</creatorcontrib><creatorcontrib>Iyengar, S.S.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><title>Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms</title><title>Artificial intelligence</title><description>This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results.</description><subject>Artificial intelligence</subject><subject>Correlation</subject><subject>Genetic algorithms</subject><subject>Image matching</subject><subject>Noise reduction</subject><subject>Sensor fusion</subject><subject>Tabu search</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkE9LxDAUxIMouK5-Aw85iR6qSZptm4uwLP6DBS96lPA2eV0j3WRNWmG_ve1WPOpp3g9mBt4Qcs7ZNWe8uGGMySwvmbhUxVUPXGTygEx4VYqsVIIfksmv5ZicpPTRY64Un5C3edeGDbTOUBNixKY_g6fgLTXQuFUcOdTUB5d2NKFPIdKIYJ1fJ9qlXig2rkW6Ro9DETTrEF37vkmn5KiGJuHZj07J6_3dy-IxWz4_PC3my8xILtqstLmRUGClBM5qqFZMFbaGVWU4n3FrKitBlCWUhkuwBQAgClZxUDUDrCGfkouxdxvDZ4ep1RuXDDYNeAxd0rliQolC_WsURa4quTfK0WhiSClirbfRbSDuNGd6GF0Pi-phUa32wIWWfex2jGH_7ZfDqJNx6A1aF9G02gb3d8E3_O6LJA</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>Brooks, R.R.</creator><creator>Iyengar, S.S.</creator><creator>Chen, J.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19960701</creationdate><title>Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms</title><author>Brooks, R.R. ; Iyengar, S.S. ; Chen, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial intelligence</topic><topic>Correlation</topic><topic>Genetic algorithms</topic><topic>Image matching</topic><topic>Noise reduction</topic><topic>Sensor fusion</topic><topic>Tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, R.R.</creatorcontrib><creatorcontrib>Iyengar, S.S.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, R.R.</au><au>Iyengar, S.S.</au><au>Chen, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms</atitle><jtitle>Artificial intelligence</jtitle><date>1996-07-01</date><risdate>1996</risdate><volume>84</volume><issue>1</issue><spage>339</spage><epage>354</epage><pages>339-354</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. Both tabu search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0004-3702(96)00012-4</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 1996-07, Vol.84 (1), p.339-354 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_miscellaneous_39029269 |
source | International Bibliography of the Social Sciences (IBSS); Elsevier |
subjects | Artificial intelligence Correlation Genetic algorithms Image matching Noise reduction Sensor fusion Tabu search |
title | Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20correlation%20and%20calibration%20of%20noisy%20sensor%20readings%20using%20elite%20genetic%20algorithms&rft.jtitle=Artificial%20intelligence&rft.au=Brooks,%20R.R.&rft.date=1996-07-01&rft.volume=84&rft.issue=1&rft.spage=339&rft.epage=354&rft.pages=339-354&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/0004-3702(96)00012-4&rft_dat=%3Cproquest_cross%3E26398469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-7d3c4a6e892e5fa8b096dfab8c1151dc8d4a277a7c14ad6aaaee2081a9f0aefa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26398469&rft_id=info:pmid/&rfr_iscdi=true |