Loading…
A knowledge-based system to support procurement decision
Purpose - To propose an infrastructure of a knowledge-based system to capture and maintain the procurement information and purchasers' knowledge, regarding how to choose partners in the supply chain network, with the adopting of the neural networks that mimic the operation of human brain to gen...
Saved in:
Published in: | Journal of knowledge management 2005, Vol.9 (1), p.87-100 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-457ccdaacedce453c6411c7bd95bd22991b6e06a499b66b617968b92189c5bb63 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-457ccdaacedce453c6411c7bd95bd22991b6e06a499b66b617968b92189c5bb63 |
container_end_page | 100 |
container_issue | 1 |
container_start_page | 87 |
container_title | Journal of knowledge management |
container_volume | 9 |
creator | Lau, H.C.W Ning, A Pun, K.F Chin, K.S Ip, W.H |
description | Purpose - To propose an infrastructure of a knowledge-based system to capture and maintain the procurement information and purchasers' knowledge, regarding how to choose partners in the supply chain network, with the adopting of the neural networks that mimic the operation of human brain to generate solutions systematically.Design methodology approach - The proposed system encompasses hybrid artificial intelligence (AI) technologies, Online analytical processing (OLAP) applications and neural networks.Findings - Be able to capture the procurement data and vendors' information that are generated in the workflows to ensure tthat he knowledge and structured information are captured without additional time and effort. Recognizes the void of research in the infrastructure of the hybrid AI technologies for knowledge discovery.Research limitations implications - Neural network does not have the sensibility characteristic of the purchasing staff, it is not able to identify the environment changes, which need to re-adjust the output to fit the environment.Practical implications - The proposed system obtains useful information related to the trend of sales demand in terms of customer preference and expected requirement using the OLAP module and then based on this information, the neural network provides recommendation related to the supported suppliers that are capable of fulfilling the requirements.Originality value - This paper proposes a knowledge-based system that offers expandability and flexibility to allow users to add more related factors for analysis to enhance the quality of decision making. |
doi_str_mv | 10.1108/13673270510582983 |
format | article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_miscellaneous_57609707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>835228851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-457ccdaacedce453c6411c7bd95bd22991b6e06a499b66b617968b92189c5bb63</originalsourceid><addsrcrecordid>eNqN0UlLAzEYBuAgCtbqD_A2eNCLo1_25FiKGxS86HmYLJWps5nMIP33ptRTRespgTxv-BaEzjHcYAzqFlMhKZHAMXBFtKIHaIIlV7lkih2me3rPN-AYncS4AsBMMzFBapa9t91n7d2bz00ZvcviOg6-yYYui2Pfd2HI-tDZMfjGt0PmvK1i1bWn6GhZ1tGffZ9T9Hp_9zJ_zBfPD0_z2SK3VMOQMy6tdWVpvbOecWoFw9hK4zQ3jhCtsREeRMm0NkIYgaUWymiClbbcGEGn6Gr7byriY_RxKJoqWl_XZeu7MRaSUcI05pDk5Z-SSwFagtwLaSqGgKB7IVEUmKI6wYsduOrG0Ka5FIQCTS0DSwhvkQ1djMEviz5UTRnWBYZis8TixxJTBraZNPxQ1u5fketfIru06N2SfgHAuaiL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230341104</pqid></control><display><type>article</type><title>A knowledge-based system to support procurement decision</title><source>Library & Information Science Abstracts (LISA)</source><source>Social Science Premium Collection</source><source>ABI/INFORM Global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><source>Library & Information Science Collection</source><creator>Lau, H.C.W ; Ning, A ; Pun, K.F ; Chin, K.S ; Ip, W.H</creator><contributor>Tsui, Eric</contributor><creatorcontrib>Lau, H.C.W ; Ning, A ; Pun, K.F ; Chin, K.S ; Ip, W.H ; Tsui, Eric</creatorcontrib><description>Purpose - To propose an infrastructure of a knowledge-based system to capture and maintain the procurement information and purchasers' knowledge, regarding how to choose partners in the supply chain network, with the adopting of the neural networks that mimic the operation of human brain to generate solutions systematically.Design methodology approach - The proposed system encompasses hybrid artificial intelligence (AI) technologies, Online analytical processing (OLAP) applications and neural networks.Findings - Be able to capture the procurement data and vendors' information that are generated in the workflows to ensure tthat he knowledge and structured information are captured without additional time and effort. Recognizes the void of research in the infrastructure of the hybrid AI technologies for knowledge discovery.Research limitations implications - Neural network does not have the sensibility characteristic of the purchasing staff, it is not able to identify the environment changes, which need to re-adjust the output to fit the environment.Practical implications - The proposed system obtains useful information related to the trend of sales demand in terms of customer preference and expected requirement using the OLAP module and then based on this information, the neural network provides recommendation related to the supported suppliers that are capable of fulfilling the requirements.Originality value - This paper proposes a knowledge-based system that offers expandability and flexibility to allow users to add more related factors for analysis to enhance the quality of decision making.</description><identifier>ISSN: 1367-3270</identifier><identifier>EISSN: 1758-7484</identifier><identifier>DOI: 10.1108/13673270510582983</identifier><language>eng</language><publisher>Kempston: Emerald Group Publishing Limited</publisher><subject>Artificial intelligence ; Decision making ; Decision support systems ; Knowledge ; Knowledge management ; Manufacturers ; Manufacturing ; Neural networks ; Purchasing ; Studies ; Supply chain management</subject><ispartof>Journal of knowledge management, 2005, Vol.9 (1), p.87-100</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright MCB UP Limited (MCB) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-457ccdaacedce453c6411c7bd95bd22991b6e06a499b66b617968b92189c5bb63</citedby><cites>FETCH-LOGICAL-c390t-457ccdaacedce453c6411c7bd95bd22991b6e06a499b66b617968b92189c5bb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/230341104/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/230341104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,4024,11688,21381,21394,27305,27923,27924,27925,33611,33612,33906,33907,34135,34136,36060,36061,43733,43892,44363,74221,74409,74895</link.rule.ids></links><search><contributor>Tsui, Eric</contributor><creatorcontrib>Lau, H.C.W</creatorcontrib><creatorcontrib>Ning, A</creatorcontrib><creatorcontrib>Pun, K.F</creatorcontrib><creatorcontrib>Chin, K.S</creatorcontrib><creatorcontrib>Ip, W.H</creatorcontrib><title>A knowledge-based system to support procurement decision</title><title>Journal of knowledge management</title><description>Purpose - To propose an infrastructure of a knowledge-based system to capture and maintain the procurement information and purchasers' knowledge, regarding how to choose partners in the supply chain network, with the adopting of the neural networks that mimic the operation of human brain to generate solutions systematically.Design methodology approach - The proposed system encompasses hybrid artificial intelligence (AI) technologies, Online analytical processing (OLAP) applications and neural networks.Findings - Be able to capture the procurement data and vendors' information that are generated in the workflows to ensure tthat he knowledge and structured information are captured without additional time and effort. Recognizes the void of research in the infrastructure of the hybrid AI technologies for knowledge discovery.Research limitations implications - Neural network does not have the sensibility characteristic of the purchasing staff, it is not able to identify the environment changes, which need to re-adjust the output to fit the environment.Practical implications - The proposed system obtains useful information related to the trend of sales demand in terms of customer preference and expected requirement using the OLAP module and then based on this information, the neural network provides recommendation related to the supported suppliers that are capable of fulfilling the requirements.Originality value - This paper proposes a knowledge-based system that offers expandability and flexibility to allow users to add more related factors for analysis to enhance the quality of decision making.</description><subject>Artificial intelligence</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Knowledge</subject><subject>Knowledge management</subject><subject>Manufacturers</subject><subject>Manufacturing</subject><subject>Neural networks</subject><subject>Purchasing</subject><subject>Studies</subject><subject>Supply chain management</subject><issn>1367-3270</issn><issn>1758-7484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M0C</sourceid><sourceid>M1O</sourceid><recordid>eNqN0UlLAzEYBuAgCtbqD_A2eNCLo1_25FiKGxS86HmYLJWps5nMIP33ptRTRespgTxv-BaEzjHcYAzqFlMhKZHAMXBFtKIHaIIlV7lkih2me3rPN-AYncS4AsBMMzFBapa9t91n7d2bz00ZvcviOg6-yYYui2Pfd2HI-tDZMfjGt0PmvK1i1bWn6GhZ1tGffZ9T9Hp_9zJ_zBfPD0_z2SK3VMOQMy6tdWVpvbOecWoFw9hK4zQ3jhCtsREeRMm0NkIYgaUWymiClbbcGEGn6Gr7byriY_RxKJoqWl_XZeu7MRaSUcI05pDk5Z-SSwFagtwLaSqGgKB7IVEUmKI6wYsduOrG0Ka5FIQCTS0DSwhvkQ1djMEviz5UTRnWBYZis8TixxJTBraZNPxQ1u5fketfIru06N2SfgHAuaiL</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Lau, H.C.W</creator><creator>Ning, A</creator><creator>Pun, K.F</creator><creator>Chin, K.S</creator><creator>Ip, W.H</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7TA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>M1O</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>2005</creationdate><title>A knowledge-based system to support procurement decision</title><author>Lau, H.C.W ; Ning, A ; Pun, K.F ; Chin, K.S ; Ip, W.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-457ccdaacedce453c6411c7bd95bd22991b6e06a499b66b617968b92189c5bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial intelligence</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Knowledge</topic><topic>Knowledge management</topic><topic>Manufacturers</topic><topic>Manufacturing</topic><topic>Neural networks</topic><topic>Purchasing</topic><topic>Studies</topic><topic>Supply chain management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, H.C.W</creatorcontrib><creatorcontrib>Ning, A</creatorcontrib><creatorcontrib>Pun, K.F</creatorcontrib><creatorcontrib>Chin, K.S</creatorcontrib><creatorcontrib>Ip, W.H</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Library Science Database</collection><collection>Psychology Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of knowledge management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, H.C.W</au><au>Ning, A</au><au>Pun, K.F</au><au>Chin, K.S</au><au>Ip, W.H</au><au>Tsui, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A knowledge-based system to support procurement decision</atitle><jtitle>Journal of knowledge management</jtitle><date>2005</date><risdate>2005</risdate><volume>9</volume><issue>1</issue><spage>87</spage><epage>100</epage><pages>87-100</pages><issn>1367-3270</issn><eissn>1758-7484</eissn><abstract>Purpose - To propose an infrastructure of a knowledge-based system to capture and maintain the procurement information and purchasers' knowledge, regarding how to choose partners in the supply chain network, with the adopting of the neural networks that mimic the operation of human brain to generate solutions systematically.Design methodology approach - The proposed system encompasses hybrid artificial intelligence (AI) technologies, Online analytical processing (OLAP) applications and neural networks.Findings - Be able to capture the procurement data and vendors' information that are generated in the workflows to ensure tthat he knowledge and structured information are captured without additional time and effort. Recognizes the void of research in the infrastructure of the hybrid AI technologies for knowledge discovery.Research limitations implications - Neural network does not have the sensibility characteristic of the purchasing staff, it is not able to identify the environment changes, which need to re-adjust the output to fit the environment.Practical implications - The proposed system obtains useful information related to the trend of sales demand in terms of customer preference and expected requirement using the OLAP module and then based on this information, the neural network provides recommendation related to the supported suppliers that are capable of fulfilling the requirements.Originality value - This paper proposes a knowledge-based system that offers expandability and flexibility to allow users to add more related factors for analysis to enhance the quality of decision making.</abstract><cop>Kempston</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/13673270510582983</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-3270 |
ispartof | Journal of knowledge management, 2005, Vol.9 (1), p.87-100 |
issn | 1367-3270 1758-7484 |
language | eng |
recordid | cdi_proquest_miscellaneous_57609707 |
source | Library & Information Science Abstracts (LISA); Social Science Premium Collection; ABI/INFORM Global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list); Library & Information Science Collection |
subjects | Artificial intelligence Decision making Decision support systems Knowledge Knowledge management Manufacturers Manufacturing Neural networks Purchasing Studies Supply chain management |
title | A knowledge-based system to support procurement decision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20knowledge-based%20system%20to%20support%20procurement%20decision&rft.jtitle=Journal%20of%20knowledge%20management&rft.au=Lau,%20H.C.W&rft.date=2005&rft.volume=9&rft.issue=1&rft.spage=87&rft.epage=100&rft.pages=87-100&rft.issn=1367-3270&rft.eissn=1758-7484&rft_id=info:doi/10.1108/13673270510582983&rft_dat=%3Cproquest_emera%3E835228851%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-457ccdaacedce453c6411c7bd95bd22991b6e06a499b66b617968b92189c5bb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230341104&rft_id=info:pmid/&rfr_iscdi=true |