Loading…
Re-ranking algorithm using post-retrieval clustering for content-based image retrieval
In this paper, we propose a re-ranking algorithm using post-retrieval clustering for content-based image retrieval (CBIR). In conventional CBIR systems, it is often observed that images visually dissimilar to a query image are ranked high in retrieval results. To remedy this problem, we utilize the...
Saved in:
Published in: | Information processing & management 2005-03, Vol.41 (2), p.177-194 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a re-ranking algorithm using post-retrieval clustering for content-based image retrieval (CBIR). In conventional CBIR systems, it is often observed that images visually dissimilar to a query image are ranked high in retrieval results. To remedy this problem, we utilize the similarity relationship of the retrieved results via post-retrieval clustering. In the first step of our method, images are retrieved using visual features such as color histogram. Next, the retrieved images are analyzed using hierarchical agglomerative clustering methods (HACM) and the rank of the results is adjusted according to the distance of a cluster from a query. In addition, we analyze the effects of clustering methods, query-cluster similarity functions, and weighting factors in the proposed method. We conducted a number of experiments using several clustering methods and cluster parameters. Experimental results show that the proposed method achieves an improvement of retrieval effectiveness of over 10% on average in the average normalized modified retrieval rank (ANMRR) measure. |
---|---|
ISSN: | 0306-4573 1873-5371 |
DOI: | 10.1016/j.ipm.2003.08.002 |