Loading…

Re-ranking algorithm using post-retrieval clustering for content-based image retrieval

In this paper, we propose a re-ranking algorithm using post-retrieval clustering for content-based image retrieval (CBIR). In conventional CBIR systems, it is often observed that images visually dissimilar to a query image are ranked high in retrieval results. To remedy this problem, we utilize the...

Full description

Saved in:
Bibliographic Details
Published in:Information processing & management 2005-03, Vol.41 (2), p.177-194
Main Authors: Park, Gunhan, Baek, Yunju, Lee, Heung-Kyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a re-ranking algorithm using post-retrieval clustering for content-based image retrieval (CBIR). In conventional CBIR systems, it is often observed that images visually dissimilar to a query image are ranked high in retrieval results. To remedy this problem, we utilize the similarity relationship of the retrieved results via post-retrieval clustering. In the first step of our method, images are retrieved using visual features such as color histogram. Next, the retrieved images are analyzed using hierarchical agglomerative clustering methods (HACM) and the rank of the results is adjusted according to the distance of a cluster from a query. In addition, we analyze the effects of clustering methods, query-cluster similarity functions, and weighting factors in the proposed method. We conducted a number of experiments using several clustering methods and cluster parameters. Experimental results show that the proposed method achieves an improvement of retrieval effectiveness of over 10% on average in the average normalized modified retrieval rank (ANMRR) measure.
ISSN:0306-4573
1873-5371
DOI:10.1016/j.ipm.2003.08.002