Loading…

A retraining methodology for enhancing agent intelligence

Data mining has proven a successful gateway for discovering useful knowledge and for enhancing business intelligence in a range of application fields. Incorporating this knowledge into already deployed applications, though, is highly impractical, since it requires reconfigurable software architectur...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2007-05, Vol.20 (4), p.388-396
Main Authors: Symeonidis, Andreas L., Athanasiadis, Ioannis N., Mitkas, Pericles A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Data mining has proven a successful gateway for discovering useful knowledge and for enhancing business intelligence in a range of application fields. Incorporating this knowledge into already deployed applications, though, is highly impractical, since it requires reconfigurable software architectures, as well as human expert consulting. In an attempt to overcome this deficiency, we have developed Agent Academy, an integrated development framework that supports both design and control of multi-agent systems (MAS), as well as “agent training”. We define agent training as the automated incorporation of logic structures generated through data mining into the agents of the system. The increased flexibility and cooperation primitives of MAS, augmented with the training and retraining capabilities of Agent Academy, provide a powerful means for the dynamic exploitation of data mining extracted knowledge. In this paper, we present the methodology and tools for agent retraining. Through experimented results with the Agent Academy platform, we demonstrate how the extracted knowledge can be formulated and how retraining can lead to the improvement – in the long run – of agent intelligence.
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2006.06.003